An Artificial Intelligence System for the Detection of Bladder Cancer via Cystoscopy: A Multicenter Diagnostic Study

膀胱镜检查 医学 膀胱癌 置信区间 尿细胞学 癌症 泌尿科 膀胱 金标准(测试) 外科 接收机工作特性 诊断准确性 核医学 放射科
作者
Shaoxu Wu,Xiong Chen,Jiexin Pan,Wen Dong,Xiayao Diao,Rui-Yun Zhang,Yonghai Zhang,Yuanfeng Zhang,Guang Qian,Hao Chen,Haotian Lin,Shizhong Xu,Zhiwen Chen,Xiaozhou Zhou,Hongbing Mei,Chenglong Wu,Qiang Lv,Baorui Yuan,Zeshi Chen,Wenjian Liao,Xuefan Yang,Haige Chen,Jian Huang,Tianxin Lin
出处
期刊:Journal of the National Cancer Institute [Oxford University Press]
卷期号:114 (2): 220-227 被引量:4
标识
DOI:10.1093/jnci/djab179
摘要

Cystoscopy plays an important role in bladder cancer (BCa) diagnosis and treatment, but its sensitivity needs improvement. Artificial intelligence has shown promise in endoscopy, but few cystoscopic applications have been reported. We report a Cystoscopy Artificial Intelligence Diagnostic System (CAIDS) for BCa diagnosis.In total, 69 204 images from 10 729 consecutive patients from 6 hospitals were collected and divided into training, internal validation, and external validation sets. The CAIDS was built using a pyramid scene parsing network and transfer learning. A subset (n = 260) of the validation sets was used for a performance comparison between the CAIDS and urologists for complex lesion detection. The diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values and 95% confidence intervals (CIs) were calculated using the Clopper-Pearson method.The diagnostic accuracies of the CAIDS were 0.977 (95% CI = 0.974 to 0.979) in the internal validation set and 0.990 (95% CI = 0.979 to 0.996), 0.982 (95% CI = 0.974 to 0.988), 0.978 (95% CI = 0.959 to 0.989), and 0.991 (95% CI = 0.987 to 0.994) in different external validation sets. In the CAIDS vs urologists' comparisons, the CAIDS showed high accuracy and sensitivity (accuracy = 0.939, 95% CI = 0.902 to 0.964; sensitivity = 0.954, 95% CI = 0.902 to 0.983) with a short latency of 12 seconds, much more accurate and quicker than the expert urologists.The CAIDS achieved accurate BCa detection with a short latency. The CAIDS may provide many clinical benefits, from increasing the diagnostic accuracy for BCa, even for commonly misdiagnosed cases such as flat cancerous tissue (carcinoma in situ), to reducing the operation time for cystoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助10
1秒前
1秒前
英俊的铭应助ggg采纳,获得10
1秒前
YY发布了新的文献求助10
2秒前
MM11111发布了新的文献求助10
5秒前
科研通AI5应助闾丘青易采纳,获得30
7秒前
ggg完成签到,获得积分20
8秒前
pangpang1992完成签到 ,获得积分10
9秒前
MM11111完成签到,获得积分10
9秒前
山山而川完成签到 ,获得积分10
11秒前
007发布了新的文献求助10
11秒前
田様应助阿玉采纳,获得10
13秒前
13秒前
苯二氮卓完成签到,获得积分10
15秒前
CodeCraft应助sun采纳,获得10
15秒前
温梦花雨完成签到 ,获得积分10
16秒前
lizhiqian2024发布了新的文献求助10
17秒前
17秒前
刘雨森完成签到 ,获得积分10
18秒前
21秒前
22秒前
闾丘青易发布了新的文献求助30
24秒前
江蓠虽晚完成签到 ,获得积分10
24秒前
Nollet完成签到 ,获得积分10
25秒前
xiaoaoni完成签到 ,获得积分10
25秒前
ggg发布了新的文献求助10
26秒前
nini发布了新的文献求助10
28秒前
CodeCraft应助lizhiqian2024采纳,获得10
29秒前
Akim应助lizhiqian2024采纳,获得10
29秒前
30秒前
bkagyin应助007采纳,获得10
32秒前
34秒前
namelorna发布了新的文献求助10
36秒前
科研通AI2S应助巴达天使采纳,获得10
37秒前
子凡应助科研通管家采纳,获得10
37秒前
HEIKU应助科研通管家采纳,获得10
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781766
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230631
捐赠科研通 3042226
什么是DOI,文献DOI怎么找? 1669897
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792