A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning

遥感 均方误差 计算机科学 相关系数 大气校正 中分辨率成像光谱仪 卫星 红外窗口 标准差 人工神经网络 环境科学 深度学习 水蒸气 大气模式 人工智能 气象学 红外线的 数学 地质学 光学 物理 机器学习 统计 天文
作者
Han Wang,Kebiao Mao,Zijin Yuan,Jiancheng Shi,Mengmeng Cao,Zhihao Qin,Si‐Bo Duan,Bo‐Hui Tang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112665-112665 被引量:59
标识
DOI:10.1016/j.rse.2021.112665
摘要

Most algorithms for land surface temperature (LST) retrieval depend on acquiring prior knowledge. To overcome this drawback, we propose a novel LST retrieval method based on model-data-knowledge-driven and deep learning, called the MDK-DL method. Based on the expert knowledge and radiation transfer model, we deduce LST retrieval mechanism and determine the best combination of the thermal infrared (TIR) bands of the sensor. Then, we use the radiation transfer model simulation and reliable satellite-ground data to establish a training and test database, and finally use the deep learning neural network for optimal computation. Three typical high-, medium- and low-spatial-resolution TIR remote sensing datasets (from Gaofen, the Moderate Resolution Imaging Spectroradiometer (MODIS), and Fengyun) are used for theoretical simulation and application analysis. The simulation shows that the minimum mean absolute error (MAE) is less than 0.1 K (standard deviation: 0.04 K; correlation coefficient: 1.000) at a small viewing direction (<7.5°) and less than 0.8 K at a large viewing direction (<65°). The in situ validation shows that the minimum MAE obtained by the optimal band combination is approximately 1 K (root mean square error (RMSE) = 1.12 K; coefficient of determination (R2) = 0.902). The retrieval accuracy is improved by increasing the number of TIR bands in the atmospheric window, and adding accurate atmospheric water vapor information produces better results. In general, four TIR bands in the atmospheric window bands are sufficient to retrieve the LST with high accuracy. Likewise, three TIR bands plus atmospheric water vapor information are sufficient for the retrieval requirements. All analyses indicate that our method is feasible and reliably accurate and can also be used to help design the instrument band to retrieve the LST with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助小陈采纳,获得10
刚刚
2秒前
共享精神应助坦率德地采纳,获得10
3秒前
Simon_Zhang发布了新的文献求助10
4秒前
RMgX完成签到,获得积分10
5秒前
Lsm给Lsm的求助进行了留言
6秒前
6秒前
隐形的宝宝完成签到,获得积分10
6秒前
大模型应助tclouds采纳,获得10
7秒前
7秒前
7秒前
虚幻龙猫发布了新的文献求助10
8秒前
8秒前
8秒前
orixero应助楷.采纳,获得10
9秒前
思源应助ggdio采纳,获得10
11秒前
冷公子完成签到,获得积分20
11秒前
非而者厚应助changfox采纳,获得200
11秒前
纯真抽屉完成签到,获得积分10
11秒前
年轻小之发布了新的文献求助10
12秒前
hhhhhyyyyyhhhhh完成签到,获得积分10
13秒前
青草木发布了新的文献求助10
13秒前
13秒前
13秒前
诚心梦之完成签到,获得积分10
14秒前
14秒前
斯文败类应助糖人采纳,获得10
15秒前
aileen9190完成签到,获得积分10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
桐桐应助牧潮涨潮落采纳,获得10
18秒前
18秒前
18秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4831822
求助须知:如何正确求助?哪些是违规求助? 4136727
关于积分的说明 12804279
捐赠科研通 3879458
什么是DOI,文献DOI怎么找? 2133787
邀请新用户注册赠送积分活动 1153943
关于科研通互助平台的介绍 1052267