Third-Order Nonlinear Optical Properties and Saturation of Two-Photon Absorption in Lead-Free Double Perovskite Nanocrystals under Femtosecond Excitation
Lead halide perovskites have been widely explored in the field of photovoltaics, light-emitting diodes, and lasers due to their outstanding linear and nonlinear optical (NLO) properties. But, the presence of lead toxicity and low chemical stability remain serious concerns. Lead-free double perovskite with excellent optical properties and chemical stability could be an alternative. However, proper examination of the NLO properties of such a material is crucial to identify their utility for future nonlinear device applications. Herein, we have made use of femtosecond (fs) Z-scan technique to explore the NLO properties of Cs2AgIn0.9Bi0.1Cl6 nanocrystals (NCs). Our measurements suggest that under nonresonant fs excitation, perovskite NCs exhibit strong two-photon absorption (TPA). The observed saturation of TPA at high light intensities has been explained by a customized model. Furthermore, we have demonstrated a change in the nonlinear refractive index of the NCs under varying input intensities. The strong TPA absorption of lead-free double perovskite NCs could be used for Kerr nonlinearity-based nonlinear applications such as optical shutters for picosecond lasers.