Mitigating Adversarial Attacks Based on Denoising & Reconstruction with Finance Authentication System Case Study

对抗制 计算机科学 活泼 稳健性(进化) 人工智能 认证(法律) 生物识别 降噪 机器学习 计算机安全 理论计算机科学 生物化学 基因 化学
作者
Juzhen Wang,Yiqi Hu,Yiren Qi,Ziwen Peng,Changjia Zhou
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 314-326
标识
DOI:10.1109/tc.2021.3066614
摘要

Deep learning techniques were widely adopted in various scenarios as a service. However, they are found naturally exposed to adversarial attacks. Such imperceptible-perturbation-based attacks can cause severe damage in nowaday authentication systems that adopt DNNs as the core, such as fingerprint liveness detection systems, face recognition systems, etc. This paper avoids improving the model's robustness and realizes the defense against adversarial attacks based on denoising and reconstruction. Our proposed method can be viewed as a two-step defense framework. The first step denoises the input adversarial example, then reconstructing the sample to close to the original clean image and help the target model output the original label. The proposed method is evaluated using six kinds of state-of-art adversarial attacks, including the adaptive attacks, which are known as the strongest attacks.We also specifically focus on demonstrating the effectiveness of our proposed work in Finance Authentication systems as a real-life case study. Experimental results reveal that our method is more robust than the previous super-resolution-only defense in respect of attaining a higher averaging accuracy over clean and distorted samples. To the best of our knowledge, it's the first work that reveals a comprehensive defense framework against adversarial attacks over Finance Authentication systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王m完成签到 ,获得积分10
刚刚
刚刚
wanci应助张成采纳,获得10
刚刚
2秒前
Dr发布了新的文献求助200
2秒前
2秒前
小鱼发布了新的文献求助10
2秒前
2秒前
平常的白猫完成签到,获得积分10
3秒前
XxxPessimist1c完成签到,获得积分10
3秒前
nb完成签到,获得积分10
4秒前
稻草完成签到,获得积分10
4秒前
大模型应助Micheallee采纳,获得10
4秒前
醉熏的语海完成签到,获得积分10
4秒前
1111完成签到 ,获得积分20
4秒前
天真的秋翠完成签到,获得积分10
4秒前
456完成签到,获得积分10
5秒前
cg发布了新的文献求助10
5秒前
5秒前
晏子完成签到,获得积分10
6秒前
科研通AI5应助无心的热狗采纳,获得10
6秒前
猪猪完成签到,获得积分10
6秒前
6秒前
7秒前
饱满晓霜完成签到,获得积分10
7秒前
7秒前
8秒前
AYEFORBIDER发布了新的文献求助20
8秒前
交院完成签到,获得积分10
8秒前
9秒前
大模型应助zychaos采纳,获得10
9秒前
怡米李完成签到,获得积分10
9秒前
李琛完成签到,获得积分10
10秒前
琪琪完成签到,获得积分10
10秒前
Yyang完成签到,获得积分10
11秒前
夏侯三问发布了新的文献求助10
11秒前
11秒前
11秒前
Zx完成签到 ,获得积分10
11秒前
坦率凉面发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926