已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generalizable cone beam CT esophagus segmentation using physics-based data augmentation

分割 锥束ct 人工智能 Sørensen–骰子系数 食管 工件(错误) 计算机科学 计算机视觉 模式识别(心理学) 物理 图像分割 医学 放射科 计算机断层摄影术 外科
作者
Sadegh Alam,Qingfeng Li,Pengpeng Zhang,Siyuan Zhang,Saad Nadeem
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (6): 065008-065008 被引量:14
标识
DOI:10.1088/1361-6560/abe2eb
摘要

Automated segmentation of the esophagus is critical in image-guided/adaptive radiotherapy of lung cancer to minimize radiation-induced toxicities such as acute esophagitis. We have developed a semantic physics-based data augmentation method for segmenting the esophagus in both planning CT (pCT) and cone beam CT (CBCT) using 3D convolutional neural networks. One hundred and ninety-one cases with their pCTs and CBCTs from four independent datasets were used to train a modified 3D U-Net architecture and a multi-objective loss function specifically designed for soft-tissue organs such as the esophagus. Scatter artifacts and noises were extracted from week-1 CBCTs using a power-law adaptive histogram equalization method and induced to the corresponding pCT were reconstructed using CBCT reconstruction parameters. Moreover, we leveraged physics-based artifact induction in pCTs to drive the esophagus segmentation in real weekly CBCTs. Segmentations were evaluated using the geometric Dice coefficient and Hausdorff distance as well as dosimetrically using mean esophagus dose and D 5cc. Due to the physics-based data augmentation, our model trained just on the synthetic CBCTs was robust and generalizable enough to also produce state-of-the-art results on the pCTs and CBCTs, achieving Dice overlaps of 0.81 and 0.74, respectively. It is concluded that our physics-based data augmentation spans the realistic noise/artifact spectrum across patient CBCT/pCT data and can generalize well across modalities, eventually improving the accuracy of treatment setup and response analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻地坛发布了新的文献求助10
3秒前
hhh发布了新的文献求助10
4秒前
6秒前
秦路发布了新的文献求助10
6秒前
7秒前
7秒前
瓜子柳絮发布了新的文献求助10
9秒前
11秒前
2224270676完成签到,获得积分10
11秒前
呜呼完成签到,获得积分10
12秒前
天天快乐应助读书的时候采纳,获得10
12秒前
瓜子柳絮完成签到,获得积分10
14秒前
英姑应助张逸凡采纳,获得10
15秒前
Eddy完成签到,获得积分10
16秒前
Jasper应助瓜子柳絮采纳,获得10
17秒前
王世卉完成签到,获得积分10
19秒前
书文混四方完成签到 ,获得积分10
19秒前
FashionBoy应助科研达人采纳,获得10
20秒前
21秒前
21秒前
酷酷问夏完成签到 ,获得积分10
23秒前
好好发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
Allan完成签到 ,获得积分10
26秒前
橙子完成签到 ,获得积分10
27秒前
Carol_yl关注了科研通微信公众号
27秒前
zzl发布了新的文献求助10
30秒前
31秒前
张逸凡完成签到,获得积分10
32秒前
32秒前
传奇3应助白泽采纳,获得20
32秒前
英俊的铭应助好好采纳,获得10
32秒前
38秒前
39秒前
张元东完成签到 ,获得积分10
39秒前
43秒前
Ricardo完成签到 ,获得积分10
43秒前
COF发布了新的文献求助10
43秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085464
求助须知:如何正确求助?哪些是违规求助? 3624479
关于积分的说明 11496674
捐赠科研通 3338626
什么是DOI,文献DOI怎么找? 1835262
邀请新用户注册赠送积分活动 903823
科研通“疑难数据库(出版商)”最低求助积分说明 821971