亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TO PREDICT FUNCTIONAL OUTCOME OF THE ARTERIOVENOUS FISTULAS - PROOF OF CONCEPT MODEL

动静脉瘘 医学 透析 瘘管 血液透析 机器学习 支持向量机 人工智能 内科学 血压 概念证明 心脏病学 外科 计算机科学 操作系统
作者
Marzia Hoque Tania,Dean Kamyab,Edis Devin,Miriam Manook,Ismail Mohamed,Muhammad Khurram
出处
期刊:Transplantation [Wolters Kluwer]
卷期号:104 (S3): S419-S419 被引量:2
标识
DOI:10.1097/01.tp.0000700744.59153.06
摘要

Introduction: Optimal access for haemodialysis is in the form of Arteriovenous Fistula (AVF) for majority of patients. Failure of AVF not only leads to a major burden on the NHS but more importantly is a significant morbidity for the patients. Haemodialysis (HD) machines record a considerable amount of data automatically that in theory can be used by Artificial Intelligence (AI) algorithms to predict fistula failure and thus preempting the treatment. We worked on an AI-enabled machine learning model to create a proof of concept for AI to predict fistula failure using common clinical measurements. Methods: Data was collected for 100 patients undergoing dialysis through an AVF between April 2013 to August 2019. Half of these patients had a working fistula since the first use and others had failed during the follow-up. Demographic information and comorbidities (diabetes mellitus, hypertension, heart failure, thrombophilia, peripheral arterial disease, anticoagulant, central stenosis) were taken into consideration. A wide range of other data including flow on the dialysis machine, litres of blood processed, needle size, type of fistula, anticoagulation, arterial and venous pressure, blood pressure and weight pre & post dialysis session were also assessed. We originally looked at all 14 variables accumulated from the HD machine, however, a further analysis during the feature selection process assisted us to include only three variables- litres of blood processed, arterial and venous pressures. A wide range of supervised machine learning algorithms such as Decision Trees, Support Vector Machines (SVM), k-Nearest Neighbours (KNN) and ensemble algorithms were explored to construct a predictive model and evaluate the impact of variables on the functionality of the fistula. Results: The 10-fold cross-validated discriminant subspace-based ensemble algorithms attained 85% classification accuracy to predict the functionality of the fistula. Using the 95% confidence interval, the sensitivity and specificity found to be within 71.41% to 92.98% and 72.76% to 94.06%, respectively. The training accuracy of discriminant subspace-based ensemble algorithms was 87%, whereas some other ensemble algorithms such as Random Forest (RF) and ensemble of a subset of kNN classifiers showed 100% training accuracy. RF and kNN subspace-based ensemble attained around 77% accuracy during 10-fold cross-validation. The large difference in accuracy between training and testing by RF and kNN subspace-based ensemble reveals the models to be overfitted, and their inability to provide correct prediction when new data is presented. Therefore, discriminant subspace-based ensemble algorithms was used as the preferred classifier for our problem.Conclusion: These results show the potential of artificial intelligence to predict fistula failure in real world example from retrospect data. There is significant room to improve the accuracy of the classification algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助ysss0831采纳,获得10
11秒前
踏实乌冬面完成签到,获得积分10
17秒前
24秒前
29秒前
lin发布了新的文献求助10
30秒前
遍空应助科研通管家采纳,获得10
32秒前
归尘应助科研通管家采纳,获得30
32秒前
32秒前
ysss0831发布了新的文献求助10
33秒前
lin完成签到,获得积分10
33秒前
43秒前
50秒前
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
2分钟前
慕青应助陆上飞采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
唐泽雪穗发布了新的文献求助40
2分钟前
3分钟前
今后应助Wei采纳,获得10
3分钟前
科研通AI5应助Ballyhooed采纳,获得10
3分钟前
3分钟前
科研通AI5应助HS采纳,获得10
3分钟前
clover完成签到,获得积分10
4分钟前
嗯嗯嗯完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助50
4分钟前
4分钟前
5分钟前
小蘑菇应助酷酷李可爱婕采纳,获得10
5分钟前
时否十七完成签到,获得积分10
5分钟前
110o发布了新的文献求助10
5分钟前
NexusExplorer应助饱满羽毛采纳,获得10
5分钟前
李李原上草完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682068
求助须知:如何正确求助?哪些是违规求助? 4057710
关于积分的说明 12545356
捐赠科研通 3753017
什么是DOI,文献DOI怎么找? 2072733
邀请新用户注册赠送积分活动 1101828
科研通“疑难数据库(出版商)”最低求助积分说明 981119