A Multiple Layer U-Net, Un-Net, for Liver and Liver Tumor Segmentation in CT

人工智能 计算机科学 卷积(计算机科学) 分割 图像(数学) 算法 机器学习 人工神经网络
作者
Song-Toan Tran,Ching-Hwa Cheng,Don‐Gey Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 3752-3764 被引量:41
标识
DOI:10.1109/access.2020.3047861
摘要

Medical image segmentation is one of the crucial tasks in diagnosis as well as pre-surgery. Recently, deep learning has significantly contributed to improving the efficiency of medical image extraction. The U-Net network has been a favored network model, which has been used as a platform architecture, for medical image segmentation. For the success of these studies, most of these models were primarily focused on the changing of the interconnection between the nodes in the network, and changing the structure of the convolution units. This would result in the ignorance of the output features of convolution units in the nodes. In this study, a U n -Net, an n-fold network architecture, was proposed based on the traditional U-Net. In the U n -Net model, the output features of the convolution units are taken as the skip connection. Therefore, the U n -Net network exploits the output features of the convolution units in the nodes. In this study, we investigated a U 2 -Net and a U 3 -Net for segmentation of the liver and liver tumors. Besides, dilated convolution (DC) and dense structure were also used in the nodes of our networks. The efficiency of our models was evaluated on two public datasets: LiTS and 3DIRCADb. The Dice's Similarity Coefficient (DSC) of our proposed models achieved 96.38% for liver segmentation and 73.69% for tumor segmentation on the LiTS dataset. For the 3DIRCADb dataset, the results achieved 96.45% in DSC for the liver segmentation and 73.34% for the tumor segmentation. The experimental results show that our proposed networks achieved better results than the recent networks. And it is convinced that our network would be useful for practical deployments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UnydingZEN发布了新的文献求助10
刚刚
Shu发布了新的文献求助10
1秒前
1秒前
3秒前
芥9完成签到,获得积分10
3秒前
cc发布了新的文献求助10
3秒前
NexusExplorer应助周小鱼采纳,获得10
3秒前
clxgene发布了新的文献求助10
3秒前
Mumu发布了新的文献求助10
3秒前
科研通AI5应助dudu采纳,获得10
5秒前
wwb完成签到,获得积分10
6秒前
dnbe发布了新的文献求助10
6秒前
李健应助mia采纳,获得10
7秒前
Wu发布了新的文献求助10
7秒前
7秒前
7秒前
111完成签到,获得积分10
8秒前
ZjutY关注了科研通微信公众号
8秒前
UnydingZEN完成签到,获得积分10
8秒前
smart完成签到,获得积分10
10秒前
10秒前
哪吒之魔童降世完成签到,获得积分10
10秒前
cc完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
专注的安卉应助wwb采纳,获得10
13秒前
祖逸凡发布了新的文献求助10
13秒前
^O^完成签到,获得积分10
13秒前
fshadow完成签到,获得积分10
14秒前
周小鱼发布了新的文献求助10
14秒前
WestHoter完成签到,获得积分10
14秒前
大风起兮发布了新的文献求助10
14秒前
搜集达人应助just flow采纳,获得10
16秒前
18秒前
18秒前
kathy完成签到,获得积分10
18秒前
Wu完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793506
求助须知:如何正确求助?哪些是违规求助? 3338452
关于积分的说明 10289653
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676211
邀请新用户注册赠送积分活动 804255
科研通“疑难数据库(出版商)”最低求助积分说明 761806