吸附
六价铬
水溶液
介孔二氧化硅
纳米颗粒
朗缪尔吸附模型
介孔材料
材料科学
化学工程
核化学
化学
无机化学
铬
纳米技术
有机化学
催化作用
工程类
作者
Eun-Hye Jang,Seung Pil Pack,Il Kim,Sungwook Chung
标识
DOI:10.1038/s41598-020-61505-1
摘要
We report on the synthesis and characterization of highly monodisperse amorphous silica nanoparticles (ASNs) and mesoporous silica nanoparticles (MSNs) with particle sizes of 15–60 nm. We demonstrate adsorption of Cr(VI) ions on amino-functionalized ASNs (NH2–ASNs) and MSNs (NH2–MSNs) and their removal from aqueous environments and show the specific surface area (SSA) of NH2–MSNs is four times as larger as that of NH2–ASNs and that more than 70% of the total SSA of NH2–MSNs is due to the presence of nanopores. Analyses of Cr(VI) adsorption kinetics on NH2–ASNs and NH2–MSNs exhibited relatively rapid adsorption behavior following pseudo-second order kinetics as determined by nonlinear fitting. NH2–ASNs and NH2–MSNs exhibited significantly higher Cr(VI) adsorption capacities of 34.0 and 42.2 mg·g−1 and removal efficiencies of 61.9 and 76.8% than those of unfunctionalized ASNs and MSNs, respectively. The Langmuir model resulted in best fits to the adsorption isotherms of NH2–ASNs and NH2–MSNs. The adsorption of Cr(VI) on NH2–ASNs and NH2–MSNs was an endothermic and spontaneous process according to the thermodynamic analyses of temperature-dependent adsorption isotherms. The removal efficiencies of NH2–ASNs and NH2–MSNs exhibited a moderate reduction of less than 25% of the maximum values after five regeneration cycles. Furthermore, NH2–MSNs were also found to reduce adsorbed Cr(VI) into less harmful Cr(III).
科研通智能强力驱动
Strongly Powered by AbleSci AI