类似哈尔的特征
计算机科学
目标检测
人工智能
无人机
四轴飞行器
Viola–Jones对象检测框架
计算机视觉
对象类检测
特征提取
帕斯卡(单位)
对象(语法)
机器学习
人脸检测
模式识别(心理学)
面部识别系统
工程类
生物
遗传学
程序设计语言
航空航天工程
作者
Maciej Pawełczyk,Marek Wojtyra
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2020-01-01
卷期号:8: 174394-174409
被引量:71
标识
DOI:10.1109/access.2020.3026192
摘要
Recent years have shown a noticeable rise in the number of incidents with drones, related to both civilian and military installations. While drone neutralization techniques have become increasingly effective, detection most often relies on professional equipment, which is too expensive to be used for all critical nodes and applications. Therefore, there is a need for drone detection systems that could work on low performance hardware. Its critical component consists of an object detection system. In this article, we introduce a new object detection dataset, built entirely to train computer vision based object detection machine learning algorithms for a task of binary object detection to enable automated, industrial camera based detection of multiple drone objects using camera feed. The dataset expands existing multiclass image classification and object detection datasets (ImageNet, MS-COCO, PASCAL VOC, anti-UAV) with a diversified dataset of drone images. In order to maximize the effectiveness of the model, real world footage was utilized, transformed into images and hand-labelled to create a custom set of 56821 images and 55539 bounding boxes. Additionally, semi-automated labelling was proposed, tested and proved to be very useful for object detection applications. The dataset was divided into train and test subsets for further processing and used to generate 603 easily deployable Haar Cascades as well as 819 high performing Deep Neural Networks based models. They were used to test different object detection methods to determine the long term feasibility of a large scale drone detection system utilizing machine learning algorithms. The study has shown that Haar Cascade can be used as the Minimum Viable Product model for mediocre performance but fails to scale up effectively for a larger dataset compared to the Deep Neural Network model.
科研通智能强力驱动
Strongly Powered by AbleSci AI