Real World Object Detection Dataset for Quadcopter Unmanned Aerial Vehicle Detection

类似哈尔的特征 计算机科学 目标检测 人工智能 无人机 四轴飞行器 Viola–Jones对象检测框架 计算机视觉 对象类检测 特征提取 帕斯卡(单位) 对象(语法) 机器学习 人脸检测 模式识别(心理学) 面部识别系统 工程类 生物 遗传学 程序设计语言 航空航天工程
作者
Maciej Pawełczyk,Marek Wojtyra
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 174394-174409 被引量:71
标识
DOI:10.1109/access.2020.3026192
摘要

Recent years have shown a noticeable rise in the number of incidents with drones, related to both civilian and military installations. While drone neutralization techniques have become increasingly effective, detection most often relies on professional equipment, which is too expensive to be used for all critical nodes and applications. Therefore, there is a need for drone detection systems that could work on low performance hardware. Its critical component consists of an object detection system. In this article, we introduce a new object detection dataset, built entirely to train computer vision based object detection machine learning algorithms for a task of binary object detection to enable automated, industrial camera based detection of multiple drone objects using camera feed. The dataset expands existing multiclass image classification and object detection datasets (ImageNet, MS-COCO, PASCAL VOC, anti-UAV) with a diversified dataset of drone images. In order to maximize the effectiveness of the model, real world footage was utilized, transformed into images and hand-labelled to create a custom set of 56821 images and 55539 bounding boxes. Additionally, semi-automated labelling was proposed, tested and proved to be very useful for object detection applications. The dataset was divided into train and test subsets for further processing and used to generate 603 easily deployable Haar Cascades as well as 819 high performing Deep Neural Networks based models. They were used to test different object detection methods to determine the long term feasibility of a large scale drone detection system utilizing machine learning algorithms. The study has shown that Haar Cascade can be used as the Minimum Viable Product model for mediocre performance but fails to scale up effectively for a larger dataset compared to the Deep Neural Network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xh发布了新的文献求助10
刚刚
科研通AI2S应助sjx采纳,获得10
1秒前
2秒前
2秒前
枕漱发布了新的文献求助10
2秒前
阿荣撒完成签到,获得积分10
3秒前
ap完成签到 ,获得积分10
4秒前
大模型应助Dnn采纳,获得10
5秒前
6秒前
kkvv发布了新的文献求助10
6秒前
2022彧发布了新的文献求助10
6秒前
科研通AI5应助坦率金鱼采纳,获得10
7秒前
JamesPei应助大侦探皮卡丘采纳,获得10
7秒前
牛顿来卜荔枝完成签到,获得积分10
8秒前
科目三应助Chloe采纳,获得10
10秒前
hello_25baby完成签到,获得积分10
12秒前
杨程喻关注了科研通微信公众号
12秒前
中国大陆完成签到 ,获得积分10
13秒前
枕漱完成签到,获得积分10
13秒前
CAt5完成签到,获得积分10
14秒前
15秒前
16秒前
飘落完成签到,获得积分10
16秒前
Dnn完成签到,获得积分10
16秒前
斯文飞槐发布了新的文献求助30
17秒前
安安完成签到 ,获得积分10
20秒前
清秀的鼠标完成签到,获得积分10
20秒前
20秒前
畅快的枫完成签到,获得积分10
21秒前
tananna完成签到,获得积分10
21秒前
21秒前
Dnn发布了新的文献求助10
23秒前
Marrissa发布了新的文献求助10
23秒前
念头完成签到 ,获得积分20
24秒前
24秒前
明哲派完成签到,获得积分10
25秒前
小通完成签到,获得积分20
26秒前
科目三应助jinfu采纳,获得30
27秒前
27秒前
qweqwe完成签到,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811186
求助须知:如何正确求助?哪些是违规求助? 3355562
关于积分的说明 10376588
捐赠科研通 3072444
什么是DOI,文献DOI怎么找? 1687425
邀请新用户注册赠送积分活动 811665
科研通“疑难数据库(出版商)”最低求助积分说明 766719