A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting

过度拟合 非线性系统 计算机科学 光伏系统 网格 波动性(金融) 适应性 时间序列 数学优化 期限(时间) 人工神经网络 人工智能 计量经济学 工程类 机器学习 数学 经济 几何学 管理 物理 电气工程 量子力学
作者
Song Ding,Ruojin Li,Zui Tao
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:227: 113644-113644 被引量:93
标识
DOI:10.1016/j.enconman.2020.113644
摘要

The rapidly growing photovoltaic power generation (PPG) instigates stochastic volatility of electricity supply that may compromise the power grid’s stability and increase the grid imbalance cost. Therefore, accurate predictions of long-term PPG are of essential importance for the capacity deployment, plan improvement, consumption enhancement, and grid balance in systems with high penetration levels of PPG. Artificial neuron networks (ANNs) have been widely utilized to forecast the short-term PPG due to their strong nonlinear fitting competence that corresponds to the prerequisite for handling PPG samples characterized by volatility and nonlinearity. However, under the circumstances of the large time span, the insufficient data samples, and the periodicity existing in the long-term PPG datasets, the ANNs are easily stuck in overfitting and generate large forecasting deviations. Given this situation, a novel discrete grey model with time-varying parameters is initially designed to deal with various PPG time series featured with nonlinearity, periodicity, and volatility, which widely exist in the long-term PPG sequences. To be specific, improvements in this proposed model lie in the following aspects: first, the time-power item and periodic item are designated to compose the time-varying parameters to capture the nonlinear, periodic, and fluctuant developing trends of various time series. Second, owing to the complex nonlinear relationships between the above parameters and forecasting errors, the genetic algorithm applies shortcuts to seek optimum solutions and thereby enhances the prediction precision. Third, several practical properties of the proposed model are elaborated to further interpret the feasibility and adaptability of the proposed model. In experiments, a range of machine learning methods, autoregression models, and grey models are involved for comparisons to validate the feasibility and efficacy of the novel model, through the observations of the PPG in America and China. Finally, a superlative performance of the proposed model with the highest forecasting precision, small volatility of empirical results, and generalizability are confirmed by the aforementioned cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
π1发布了新的文献求助10
1秒前
顺利毕业发布了新的文献求助10
2秒前
大意的初雪完成签到,获得积分10
2秒前
Smoiy完成签到 ,获得积分10
2秒前
ZYQ完成签到 ,获得积分10
5秒前
momo发布了新的文献求助10
5秒前
彭于晏应助王闪闪采纳,获得10
5秒前
传奇3应助YXHTCM采纳,获得10
7秒前
汉堡包应助Andorchid采纳,获得10
8秒前
科研通AI2S应助JiegeSCI采纳,获得10
8秒前
桐桐应助π1采纳,获得10
9秒前
幽默亦旋完成签到 ,获得积分10
9秒前
搞怪薯片发布了新的文献求助40
9秒前
xkkk完成签到,获得积分10
9秒前
所所应助仗炮由纪采纳,获得10
10秒前
10秒前
幽默海白完成签到 ,获得积分10
10秒前
13秒前
14秒前
16秒前
屁王完成签到,获得积分10
16秒前
16秒前
书记发布了新的文献求助10
17秒前
仗炮由纪完成签到,获得积分10
17秒前
jbtjht完成签到,获得积分10
18秒前
treasure完成签到 ,获得积分10
18秒前
王闪闪发布了新的文献求助10
18秒前
YXHTCM发布了新的文献求助10
21秒前
仗炮由纪发布了新的文献求助10
22秒前
Somnolence咩完成签到,获得积分10
23秒前
杜11完成签到,获得积分10
24秒前
烟花应助不缺人YYDS采纳,获得10
26秒前
飞飞飞fff完成签到 ,获得积分10
27秒前
28秒前
阿鑫完成签到 ,获得积分10
28秒前
zx完成签到 ,获得积分10
31秒前
雾散完成签到,获得积分10
31秒前
32秒前
明月照我程完成签到,获得积分10
33秒前
小小飞xxf完成签到 ,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745