TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material

材料科学 阳极 复合数 涂层 电化学 图层(电子) 复合材料 电极 纳米技术 物理化学 化学
作者
Zhexi Xiao,Chunhui Yu,Xianqing Lin,Xiao Chen,Chenxi Zhang,Hairong Jiang,Rufan Zhang,Fei Wei
出处
期刊:Nano Energy [Elsevier]
卷期号:77: 105082-105082 被引量:136
标识
DOI:10.1016/j.nanoen.2020.105082
摘要

SiOx-based anode materials suffer from inherent defects of volume expansion, high initial capacity loss, and the huge electron and ion resistance in the unstable solid electrolyte interphase layer impede their commercialization. Surface coating is the most prevalent strategy for resolving the key concerns. In this paper, we present a dual-shell coating structural composite (denoted as SiOx@TiO2@C) through a two-step process. By introducing a high-quality anatase-phase TiO2 layer, a highly stable interface and decreased resistance to electron and ion diffusion of composite are achieved and investigated systematically. Additionally, the side reactivity is studied firstly. Moreover, the enhanced safety of the electrode is evaluated. The as-prepared composite exhibites a high initial discharge capacity of 1624.7 mAh g−1 with an initial coulombic efficiency (ICE) of 81.2%, capacity retention of 89.5% (vs 2nd discharge) after 800 cycles, and a reversible capacity of 949.7 mAh g−1 at 10 A g−1. The assembled full-cell exhibites an initial area capacity of 2.6 mAh cm−2 with an ICE higher than 90%; the exceeding 106 times and 60 times increase in electron conductivity and Li+ conductivity facilitate electron and ion diffusion particularly at high rates. The approximately 1.5 times higher energy barrier implies the blocking effect of the TiO2 layer on the side reaction. The almost 4 times decrease in the accumulated enthalpy reveals the positive effect of the anatase-phase TiO2 layer on thermal stability. The probable reasons associated with the interface stability are discussed and proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助四喜格格采纳,获得10
刚刚
活力大雁完成签到,获得积分10
1秒前
Lynth_雪鸮发布了新的文献求助10
1秒前
无极微光应助小新采纳,获得20
1秒前
1秒前
1秒前
明芷蝶完成签到,获得积分10
2秒前
华仔应助聪明梦容采纳,获得10
2秒前
levi完成签到,获得积分10
3秒前
ding应助Hu采纳,获得10
3秒前
所所应助hyw采纳,获得10
4秒前
cst发布了新的文献求助10
4秒前
pluto应助无辜的小刺猬采纳,获得10
5秒前
5秒前
一叶知秋发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
xiaobai123456发布了新的文献求助10
6秒前
6秒前
6秒前
酷波er应助呱嚓采纳,获得10
7秒前
7秒前
浮游应助明芷蝶采纳,获得10
7秒前
7秒前
今后应助HarbinDing采纳,获得10
8秒前
8秒前
烟花应助Allowsany采纳,获得10
8秒前
8秒前
完美世界应助zk1438328200采纳,获得10
8秒前
8秒前
bkagyin应助舒服的灰狼采纳,获得10
9秒前
明天见完成签到,获得积分20
10秒前
10秒前
zhaoyu完成签到 ,获得积分10
10秒前
11秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
一一应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
思源应助略略略采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621020
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933223
捐赠科研通 4764227
什么是DOI,文献DOI怎么找? 2551427
邀请新用户注册赠送积分活动 1513956
关于科研通互助平台的介绍 1474733