已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable Deep Learning for SAR Data

人工智能 计算机科学 合成孔径雷达 深度学习 模式识别(心理学) 特征学习 卷积神经网络 光谱图 计算机视觉 遥感 地质学
作者
Mihai Datcu,Vlad Andrei,Corneliu Octavian Dumitru,Zhongling Huang,Gottfried Schwarz,Juanping Zhao
链接
摘要

When understanding the single polarization SAR images with deep learning, the texture features are usually learned automatically from the intensity. As an active microwave imaging, however, the complex Synthetic Aperture Radar (SAR) images not only contain the amplitude, but also the phase information, which is important and useful for interpretation. The time-frequency analysis (TFA) provides a physical understanding of the backscattering properties for each pixel in complex SAR images. As a consequence, a novel end-to-end deep learning framework to make the best use of both the physical properties of the objects and the spatial texture of the images is proposed. We start with a convolutional auto-encoder to learn the frequency features from each sub-spectrogram obtained by TFA, and then align them spatially. Next, the spatially aligned features in frequency domain and the low-level texture features obtained from a pre-trained SAR specific network in spatial domain are concatenated as the input of a post-processing residual network to learn spatial-frequency joint knowledge. The experiments were done on a large number of TerraSAR-X images. The proposed framework keeps the full information of complex-value SAR images, making a significant improvement compared with other spatial based deep learning methods in SAR image interpretation. In order to learn the latent space that governs the backscatter values in SAR-imagery we explored the dimensionality reduction properties of variational auto-encoders (VAE). By taking both channels of the SAR data as input and mapping them to a compact, lower-dimensional representation, we constructed a single feature-vector consisting of the parameters of the latent space. This information was then fed to a classifier such as k-NN or SVM (Support Vector machine). Experiments on Sentinel-1 GRDH data using VV/VH polarizations showcased the capability of this method to extract the relevant features of the images, achieving an average precision/recall in the case of k-NN of 0.97 and 0.96, respectively. Extracting physical scattering signatures from non-full-polarimetric images is of significant importance, but very challengeable. To achieve this goal and meanwhile exploring potentials of polarimetric SAR (PolSAR) images with different polarization modes and their combinations on this task, we proposed a contrastive regulated convolutional neural network (CNN) in complex domain. This method is to learn a physical-interpretable deep learning model from original scattering matrixes. The ground-truth is computed automatically by leveraging the Cloude and Pottier’s H-α division plane, which leads this work to an unsupervised learning mechanism. Considering the confused division boundary, a contrastive regulated term is computed in complex domain and added to the selected optimal loss function with a balancing trade-off coefficient. Experiments on DLR’s airborne, L-band F-SAR image demonstrate the feasibility of extracting physical scattering signatures from non-full-polarimetric SAR images. Moreover, the capabilities of different polarized images for achieving this are comprehensively analyzed and discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呜呜呜完成签到,获得积分10
刚刚
小何完成签到,获得积分20
1秒前
3秒前
冷静的若枫完成签到 ,获得积分10
4秒前
8秒前
打工不可能完成签到,获得积分10
8秒前
美罗培南完成签到,获得积分10
9秒前
海派Hi完成签到 ,获得积分10
9秒前
12秒前
猜猜我是谁完成签到,获得积分10
17秒前
CodeCraft应助Yyyyyyyyy采纳,获得10
17秒前
可爱的函函应助阿是采纳,获得10
20秒前
加贝完成签到 ,获得积分10
20秒前
lyw完成签到 ,获得积分10
21秒前
NexusExplorer应助科研打工人采纳,获得10
21秒前
23秒前
Ava应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
nn完成签到,获得积分10
30秒前
LR发布了新的文献求助10
32秒前
自觉语琴完成签到 ,获得积分10
32秒前
bkagyin应助aike采纳,获得10
34秒前
35秒前
顾矜应助禾斗石开采纳,获得10
35秒前
小蘑菇应助陈陈采纳,获得10
37秒前
40秒前
hmy发布了新的文献求助10
44秒前
yangyajie发布了新的文献求助10
46秒前
林晖清完成签到,获得积分10
49秒前
49秒前
云人类完成签到,获得积分20
52秒前
jiangchuansm完成签到,获得积分10
54秒前
陈陈发布了新的文献求助10
54秒前
芜衡落砂完成签到,获得积分10
56秒前
56秒前
东方发布了新的文献求助10
58秒前
有风的地方完成签到 ,获得积分10
1分钟前
陈陈完成签到,获得积分10
1分钟前
MinQi应助LR采纳,获得10
1分钟前
阿元发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815679
求助须知:如何正确求助?哪些是违规求助? 3359287
关于积分的说明 10401909
捐赠科研通 3077048
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694