Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes After Acute Ischemic Stroke

医学 冲程(发动机) 接收机工作特性 队列 回顾性队列研究 内科学 物理疗法 急诊医学 机械工程 工程类
作者
Koutarou Matsumoto,Yasunobu Nohara,Hidehisa Soejima,Toshiro Yonehara,Naoki Nakashima,Masahiro Kamouchi
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (5): 1477-1483 被引量:62
标识
DOI:10.1161/strokeaha.119.027300
摘要

Background and Purpose— Several stroke prognostic scores have been developed to predict clinical outcomes after stroke. This study aimed to develop and validate novel data-driven predictive models for clinical outcomes by referring to previous prognostic scores in patients with acute ischemic stroke in a real-world setting. Methods— We used retrospective data of 4237 patients with acute ischemic stroke who were hospitalized in a single stroke center in Japan between January 2012 and August 2017. We first validated point-based stroke prognostic scores (preadmission comorbidities, level of consciousness, age, and neurological deficit [PLAN] score, ischemic stroke predictive risk score [IScore], and acute stroke registry and analysis of Lausanne [ASTRAL] score in all patients; Houston intraarterial recanalization therapy [HIAT] score, totaled health risks in vascular events [THRIVE] score, and stroke prognostication using age and National Institutes of Health Stroke Scale-100 [SPAN-100] in patients who received reperfusion therapy) in our cohort. We then developed predictive models using all available data by linear regression or decision tree ensembles (random forest and gradient boosting decision tree) and evaluated their area under the receiver operating characteristic curve for clinical outcomes after repeated random splits. Results— The mean (SD) age of the patients was 74.7 (12.9) years and 58.3% were men. Area under the receiver operating characteristic curves (95% CIs) of prognostic scores in our cohort were 0.92 PLAN score (0.90–0.93), 0.86 for IScore (0.85–0.87), 0.85 for ASTRAL score (0.83–0.86), 0.69 for HIAT score (0.62–0.75), 0.70 for THRIVE score (0.64–0.76), and 0.70 for SPAN-100 (0.63–0.76) for poor functional outcomes, and 0.87 for PLAN score (0.85–0.90), 0.88 for IScore (0.86–0.91), and 0.88 ASTRAL score (0.85–0.91) for in-hospital mortality. Internal validation of data-driven prediction models showed that their area under the receiver operating characteristic curves ranged between 0.88 and 0.94 for poor functional outcomes and between 0.84 and 0.88 for in-hospital mortality. Ensemble models of a decision tree tended to outperform linear regression models in predicting poor functional outcomes but not in predicting in-hospital mortality. Conclusions— Stroke prognostic scores perform well in predicting clinical outcomes after stroke. Data-driven models may be an alternative tool for predicting poststroke clinical outcomes in a real-world setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真的小熊饼干完成签到,获得积分10
2秒前
冷艳的小懒虫完成签到 ,获得积分10
3秒前
李演员完成签到,获得积分10
4秒前
Master发布了新的文献求助10
5秒前
6秒前
dddd完成签到 ,获得积分10
7秒前
秃头小宝贝完成签到,获得积分10
8秒前
奈木扎完成签到,获得积分10
8秒前
莫友安完成签到 ,获得积分10
9秒前
李东东完成签到 ,获得积分10
10秒前
义气凛发布了新的文献求助10
11秒前
思思发布了新的文献求助20
12秒前
mona完成签到,获得积分10
13秒前
17秒前
凡高爱自由完成签到,获得积分10
20秒前
大模型应助怕孤单的思雁采纳,获得10
22秒前
鹿小新发布了新的文献求助10
25秒前
25秒前
hao完成签到,获得积分10
26秒前
70发布了新的文献求助10
26秒前
Xiaoxiao应助无奈的铅笔采纳,获得10
30秒前
31秒前
31秒前
dddd完成签到,获得积分10
31秒前
32秒前
传奇3应助lvsehx采纳,获得10
33秒前
光亮千易完成签到,获得积分10
33秒前
嘻嘻嘻完成签到,获得积分10
34秒前
35秒前
35秒前
蓝色发布了新的文献求助10
35秒前
汉堡包应助dddd采纳,获得10
35秒前
36秒前
38秒前
39秒前
神的女人完成签到,获得积分10
39秒前
lvsehx完成签到,获得积分10
41秒前
Yue发布了新的文献求助10
41秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745