Bayesian weighted Mendelian randomization for causal inference based on summary statistics

孟德尔随机化 推论 因果推理 计算机科学 协变量 多效性 贝叶斯推理 贝叶斯概率 全基因组关联研究 机器学习 人工智能 数据挖掘 计量经济学 数学 生物 遗传变异 单核苷酸多态性 基因型 表型 基因 生物化学
作者
Jia Zhao,Jingsi Ming,Xianghong Hu,Gang Chen,Jin Liu,Can Yang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (5): 1501-1508 被引量:101
标识
DOI:10.1093/bioinformatics/btz749
摘要

Abstract Motivation The results from Genome-Wide Association Studies (GWAS) on thousands of phenotypes provide an unprecedented opportunity to infer the causal effect of one phenotype (exposure) on another (outcome). Mendelian randomization (MR), an instrumental variable (IV) method, has been introduced for causal inference using GWAS data. Due to the polygenic architecture of complex traits/diseases and the ubiquity of pleiotropy, however, MR has many unique challenges compared to conventional IV methods. Results We propose a Bayesian weighted Mendelian randomization (BWMR) for causal inference to address these challenges. In our BWMR model, the uncertainty of weak effects owing to polygenicity has been taken into account and the violation of IV assumption due to pleiotropy has been addressed through outlier detection by Bayesian weighting. To make the causal inference based on BWMR computationally stable and efficient, we developed a variational expectation-maximization (VEM) algorithm. Moreover, we have also derived an exact closed-form formula to correct the posterior covariance which is often underestimated in variational inference. Through comprehensive simulation studies, we evaluated the performance of BWMR, demonstrating the advantage of BWMR over its competitors. Then we applied BWMR to make causal inference between 130 metabolites and 93 complex human traits, uncovering novel causal relationship between exposure and outcome traits. Availability and implementation The BWMR software is available at https://github.com/jiazhao97/BWMR. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘小刘发布了新的文献求助10
1秒前
bkagyin应助malenia采纳,获得10
2秒前
Zekun发布了新的文献求助10
2秒前
SongNan_Ding发布了新的文献求助10
3秒前
4秒前
我是老大应助无情的宛儿采纳,获得10
4秒前
小杰杰完成签到,获得积分10
4秒前
12秒前
12秒前
Hazellee完成签到 ,获得积分10
13秒前
哈哈哈完成签到 ,获得积分10
15秒前
Aeon发布了新的文献求助30
16秒前
愉快的孤晴完成签到,获得积分10
17秒前
19秒前
应夏山发布了新的文献求助10
19秒前
科研通AI5应助ZHH采纳,获得10
19秒前
科研通AI5应助风中的安珊采纳,获得10
19秒前
21秒前
keaid完成签到 ,获得积分10
21秒前
21秒前
kangjie123完成签到,获得积分10
23秒前
豆豆完成签到,获得积分10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
www发布了新的文献求助10
25秒前
25秒前
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
25秒前
aa发布了新的文献求助30
26秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409