Inter- and Intra-Subject Transfer Reduces Calibration Effort for High-Speed SSVEP-Based BCIs

校准 计算机科学 主题(文档) 脑-机接口 传输(计算) 人工智能 语音识别 脑电图 心理学 神经科学 数学 统计 图书馆学 并行计算
作者
Chi Man Wong,Ze Wang,Boyu Wang,Ka Fai Lao,Agostinho Rosa,Peng Xu,Tzyy‐Ping Jung,C. L. Philip Chen,Feng Wan
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 2123-2135 被引量:70
标识
DOI:10.1109/tnsre.2020.3019276
摘要

Objective: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that can deliver a high information transfer rate (ITR) usually require subject's calibration data to learn the class- and subject-specific model parameters (e.g. the spatial filters and SSVEP templates). Normally, the amount of the calibration data for learning is proportional to the number of classes (or visual stimuli), which could be huge and consequently lead to a time-consuming calibration. This study presents a transfer learning scheme to substantially reduce the calibration effort. Methods: Inspired by the parameter-based and instance-based transfer learning techniques, we propose a subject transfer based canonical correlation analysis (stCCA) method which utilizes the knowledge within subject and between subjects, thus requiring few calibration data from a new subject. Results: The evaluation study on two SSVEP datasets (from Tsinghua and UCSD) shows that the stCCA method performs well with only a small amount of calibration data, providing an ITR at 198.18±59.12 (bits/min) with 9 calibration trials in the Tsinghua dataset and 111.04±57.24 (bits/min) with 3 trials in the UCSD dataset. Such performances are comparable to those from using the multi-stimulus CCA (msCCA) and the ensemble task-related component analysis (eTRCA) methods with the minimally required calibration data (i.e., at least 40 trials in the Tsinghua dataset and at least 12 trials in the UCSD dataset), respectively. Conclusion: Inter- and intra-subject transfer helps the recognition method achieve high ITR with extremely little calibration effort. Significance: The proposed approach saves much calibration effort without sacrificing the ITR, which would be significant for practical SSVEP-based BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
干净博涛完成签到 ,获得积分10
3秒前
风趣秋白完成签到,获得积分10
5秒前
HalfGumps完成签到,获得积分10
7秒前
危机的芸完成签到 ,获得积分10
8秒前
缓慢的可乐完成签到,获得积分10
8秒前
9秒前
edtaa完成签到 ,获得积分10
9秒前
过时的明辉完成签到,获得积分10
9秒前
13秒前
cdercder应助魏伯安采纳,获得10
14秒前
14秒前
优雅冰蝶完成签到,获得积分10
14秒前
kekekelili完成签到,获得积分10
14秒前
雪花羔完成签到,获得积分10
15秒前
害羞便当完成签到 ,获得积分10
15秒前
Kawhichan完成签到,获得积分10
15秒前
Jay发布了新的文献求助30
16秒前
tdtk发布了新的文献求助10
17秒前
轻松小张应助Alex采纳,获得30
17秒前
雪花羔发布了新的文献求助10
18秒前
夜曦完成签到 ,获得积分10
18秒前
Accept2024发布了新的文献求助10
18秒前
独孤阳光完成签到,获得积分10
19秒前
Angela完成签到,获得积分10
19秒前
22秒前
cuishuai完成签到,获得积分10
24秒前
GD完成签到,获得积分10
25秒前
GGBond完成签到,获得积分10
25秒前
九月完成签到,获得积分10
26秒前
26秒前
Alex完成签到,获得积分10
27秒前
木之木完成签到,获得积分10
27秒前
YOYOYO完成签到,获得积分10
28秒前
Anjianfubai发布了新的文献求助10
28秒前
稳重奇异果应助好久不见采纳,获得10
28秒前
科研通AI5应助魏白晴采纳,获得30
29秒前
谢富杰发布了新的文献求助30
31秒前
zzz完成签到,获得积分10
32秒前
mmyhn发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290