Fabrics Recommendation for Fashion Design by Using Fuzzy Logic and Rough Sets

关系(数据库) 计算机科学 模糊逻辑 推荐系统 选择(遗传算法) 粗集 感知 服装设计 钥匙(锁) 人工智能 数据挖掘 机器学习 服装 计算机安全 生物 历史 考古 神经科学
作者
Min Dong,Xianyi Zeng,Ludovic Koehl,Junjie Zhang
出处
期刊:Journal of fuzzy logic and modeling in engineering [Bentham Science]
卷期号:1 (1) 被引量:1
标识
DOI:10.2174/2666294901666210223165824
摘要

Background: Fabric is one of the key and vital design factors in fashion design. However, selection of relevant fabrics is rather complex for designers and managers due to the complexity of criteria at different levels. Introduction: In this paper, we propose a new fabric recommendation model in order to quickly realize fabric selection from non-technical fashion features only and predict fashion features from any fabric technical parameters. This approach is extremely significant for fashion designers who do not completely master fabric technical details. It is also very useful for fabric developers who have no knowledge on fashion markets and fashion consumers. Method: The proposed fabric recommendation model has been built by exploiting designers’ professional knowledge and consumers’ preferences. Concretely, we first use fuzzy sets for formalizing and interpreting measured technical parameters and linguistic sensory properties of fabrics and then model the relation between the technical parameters and sensory properties by using rough sets. Next, we model the relation between fashion themes and sensory properties using fuzzy relations. By combining these two models, we establish a hybrid model characterizing the relation between fashion themes and technical parameters. Result: The proposed model has been validated through a real fabric recommendation case for designer’s specific requirements. We can find that the proposed model is efficient since the averaged value of prediction errors is 8.57%, which does not exceed 10% (generally considered as allowable range of human perception error). Conclusion: The proposed model will constitute one important component for establishing an intelligent recommender system for garment design, enabling to support innovations in textile/apparel industry in terms of mass customization and e-shopping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
任性的蝴蝶完成签到,获得积分10
3秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
上官若男应助科研通管家采纳,获得20
6秒前
李健应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
Cat应助科研通管家采纳,获得50
7秒前
ding应助科研通管家采纳,获得30
7秒前
今后应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
CWNU_HAN应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
8秒前
六月六发布了新的文献求助10
8秒前
科目三应助cs采纳,获得10
9秒前
王恒发布了新的文献求助10
11秒前
pluto应助SCI采纳,获得10
11秒前
ZUOSG发布了新的文献求助10
12秒前
19秒前
23秒前
23秒前
24秒前
ZUOSG完成签到,获得积分10
26秒前
28秒前
28秒前
xiao_J发布了新的文献求助10
28秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778030
求助须知:如何正确求助?哪些是违规求助? 3323705
关于积分的说明 10215513
捐赠科研通 3038914
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339