已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Encrypted Traffic Classification Framework Based on Convolutional Neural Networks and Stacked Autoencoders

卷积神经网络 计算机科学 加密 交通分类 人工智能 机器学习 模式识别(心理学) 计算机网络 服务质量
作者
Maonan Wang,Kangfeng Zheng,Dan Luo,Yanqing Yang,Xiujuan Wang
标识
DOI:10.1109/iccc51575.2020.9344978
摘要

In recent years, deep learning-based encrypted traffic classification has proven to be effective; especially, using neural networks to extract features from raw traffic to classify encrypted traffic. However, most of the neural networks need a fixed-sized input, so that the raw traffic need to be trimmed. This will cause the loss of some information; for example, we do not know the number of packets in a session. To solve these problems, a framework, which implements both a convolutional neural network (CNN) and a stacked autoencoder (SAE), is proposed in this paper. This framework uses a CNN to extract high-level features from raw network traffic and uses an SAE to encode the 26 statistical features calculated by raw traffic directly. The statistical features can be used to supplement the information loss due to trimming. After that, the outputs from the CNN and the encoder in SAE are combined into new high-level features; these new features include the information from the trimmed raw traffic and statistical features. Finally, these new high-level features are used to classify encrypted traffic. "ISCX VPNnonVPN" traffic dataset is used to demonstrate the feasibility of this framework. The framework proposed in this paper can improve the performance of encrypted traffic classification; it achieves an f1-score of 0.98. Furthermore, new high-level features, which generated by combining the features extracted from a convolutional neural network and a stacked autoencoder, can represent different classes of traffic well. More importantly, this work is unique in the encrypted traffic classification field, for it is the first time to use both raw traffic and statistical features as the input of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苏州河发布了新的文献求助10
2秒前
lyx发布了新的文献求助30
3秒前
科研通AI2S应助陈秋红采纳,获得10
4秒前
动漫大师发布了新的文献求助10
5秒前
斯文败类应助苏州河采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
9秒前
大模型应助粑粑采纳,获得10
10秒前
刘倩关注了科研通微信公众号
13秒前
13秒前
星辰大海应助等待忆安采纳,获得10
17秒前
17秒前
科研通AI2S应助明理东蒽采纳,获得10
20秒前
整齐便当发布了新的文献求助10
21秒前
Tatw完成签到 ,获得积分10
22秒前
22秒前
22秒前
25秒前
26秒前
26秒前
王冬瓜发布了新的文献求助10
28秒前
刘倩发布了新的文献求助10
28秒前
淡淡乐巧发布了新的文献求助10
29秒前
29秒前
李爱国应助赵坤煊采纳,获得10
30秒前
30秒前
30秒前
万能图书馆应助chen采纳,获得10
31秒前
31秒前
31秒前
卡卡咧咧发布了新的文献求助10
31秒前
32秒前
wei发布了新的文献求助10
32秒前
33秒前
酷波er应助李李李采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787862
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262111
捐赠科研通 3049278
什么是DOI,文献DOI怎么找? 1673487
邀请新用户注册赠送积分活动 801982
科研通“疑难数据库(出版商)”最低求助积分说明 760458