Development and application of machine learning‐based prediction model for distillation column

蒸馏 人工神经网络 规范化(社会学) 计算机科学 分馏塔 能源消耗 过程(计算) 工艺工程 人工智能 机器学习 工程类 化学 色谱法 社会学 人类学 电气工程 操作系统
作者
Hyukwon Kwon,Kwang Cheol Oh,Yeongryeol Choi,Yongchul G. Chung,Junghwan Kim
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:36 (5): 1970-1997 被引量:52
标识
DOI:10.1002/int.22368
摘要

Distillation is an energy-consuming process in the chemical industry. Optimizing operating conditions can reduce the amount of energy consumed and improve the efficiency of chemical processes. Herein, we developed a machine learning-based prediction model for a distillation process and applied the developed model to process optimization. The energy consumed in the distillation process is mainly used to control the temperature of the distillation column. We developed a model that predicted temperature according to the following procedure: (1) data collection; (2) characteristic extraction from the collected data to reduce learning time; (3) min–max normalization to improve prediction performance; and (4) a case study conducted to select the artificial neural network algorithm, optimization method, and batch size, which are the most appropriate elements for predicting production stage temperature. The result of the case study revealed that the most appropriate model was observed with a root mean squared error of 0.0791 and a coefficient of determination of 0.924 when the long short-term memory algorithm, Adam optimization method, and batch size of 128 were applied. We calculated the amount of steam consumption required to consistently maintain the production stage temperature by utilizing the developed model. The calculation result indicated that the amount of steam consumption was expected to be reduced by approximately 14%, from an average flow rate of 2763–2374 kg/h. This study proposed a control method applying a machine learning-based prediction model in the distillation process and confirmed that operation energy could be reduced through efficient operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小希发布了新的文献求助10
1秒前
rilin发布了新的文献求助10
1秒前
kk完成签到,获得积分10
1秒前
摸俞发布了新的文献求助10
1秒前
青衣北风发布了新的文献求助10
2秒前
顺心未来发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
5秒前
5秒前
小宋应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
witty完成签到 ,获得积分0
6秒前
haoxi发布了新的文献求助10
7秒前
知了完成签到 ,获得积分10
8秒前
桐桐应助小小采纳,获得10
8秒前
Koi发布了新的文献求助10
9秒前
hush发布了新的文献求助10
10秒前
酷波er应助wodetaiyangLLL采纳,获得10
12秒前
研友_VZG7GZ应助坚强的霆采纳,获得10
12秒前
李昶完成签到 ,获得积分10
12秒前
Nienie发布了新的文献求助10
13秒前
lilongcheng发布了新的文献求助10
13秒前
14秒前
mumu完成签到,获得积分10
15秒前
zl完成签到,获得积分20
15秒前
mi发布了新的文献求助10
15秒前
科研通AI5应助Tracy采纳,获得10
16秒前
17秒前
动听的囧完成签到,获得积分10
17秒前
Akim应助隐形的芸遥采纳,获得10
20秒前
浮生若梦发布了新的文献求助10
23秒前
24秒前
高贵毛巾完成签到,获得积分10
25秒前
dongsheng发布了新的文献求助10
29秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903658
求助须知:如何正确求助?哪些是违规求助? 3448463
关于积分的说明 10853161
捐赠科研通 3173896
什么是DOI,文献DOI怎么找? 1753644
邀请新用户注册赠送积分活动 847798
科研通“疑难数据库(出版商)”最低求助积分说明 790473