生存素
癌症研究
细胞凋亡
化学
全身给药
癌症
医学
体内
生物
内科学
生物化学
生物技术
作者
Changhong Ke,Huan Hou,Kui Su,Chaohong Huang,Qian Yuan,Shuyi Li,Jianwu Sun,Yue Lin,Chuanbin Wu,Yu Zhao,Zhengqiang Yuan
摘要
Extracellular vesicle (EV) delivery of TNF-related apoptosis-inducing ligand (TRAIL) (EV-T) has been shown to be highly efficient for cancer treatment when combined with the potent cyclin-dependent kinase (CDK) inhibitor dinaciclib (SCH727965, Dina). However, only topical administration was previously tested for cancer treatment, leaving unknown the efficacy of systemic therapy by EV-T and Dina. In this study we hypothesize that the systemic application of EV-T and Dina can be performed through EV-mediated co-delivery of TRAIL and Dina. Dina was first post-loaded into EV-Ts by sonication to prepare EV-mediated co-delivery of TRAIL and Dina, designated Dina@EV-T. Then Dina@EV-Ts were shown to be stable, readily endocytosed into cancer cells, and highly effective at inducing intensive apoptosis in resistant cancer lines but not in normal cells. Moreover, systemically infused Dina@EV-Ts showed evident tumor tropism suggesting their good potential for tumour-targeted delivery of therapeutics. Importantly, the systemic therapy with Dina@EV-Ts showed the best efficacy in vivo when compared with other treatments. The augmented therapeutic efficacy appeared to be associated with the concomitant suppression of prosurvival CDK1 and anti-apoptotic proteins including CDK9, cFLIP, MCL-1, BCL-2 and Survivin by Dina@EV-T treatment. Additionally, there were no adverse side effects observed for the systemic Dina@EV-T therapy. In conclusion, our data suggest that the co-delivery of TRAIL and Dina by EVs potentially constitutes a novel tumour-targeted therapy, which is highly effective and safe for the treatment of refractory tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI