Application of an infrared thermography-based model to detect pressure injuries: a prospective cohort study

医学 接收机工作特性 置信区间 危险系数 比例危险模型 热成像 队列 前瞻性队列研究 压力伤 内科学 外科 急诊医学 红外线的 光学 物理
作者
Xiaoqiong Jiang,Yu Wang,Yuxin Wang,Min Zhou,Pan Huang,Yufan Yang,Fang Peng,Hai-Shuang Wang,Xiaomei Li,Liping Zhang,Fuman Cai
出处
期刊:British Journal of Dermatology [Wiley]
卷期号:187 (4): 571-579 被引量:18
标识
DOI:10.1111/bjd.21665
摘要

Abstract Background It is challenging to detect pressure injuries at an early stage of their development. Objectives To assess the ability of an infrared thermography (IRT)-based model, constructed using a convolution neural network, to reliably detect pressure injuries. Methods A prospective cohort study compared validity in patients with pressure injury (n = 58) and without pressure injury (n = 205) using different methods. Each patient was followed up for 10 days. Results The optimal cut-off values of the IRT-based model were 0·53 for identifying tissue damage 1 day before visual detection of pressure injury and 0·88 for pressure injury detection on the day visual detection is possible. Kaplan–Meier curves and Cox proportional hazard regression model analysis showed that the risk of pressure injury increased 13-fold 1 day before visual detection with a cut-off value higher than 0·53 [hazard ratio (HR) 13·04, 95% confidence interval (CI) 6·32–26·91; P < 0·001]. The ability of the IRT-based model to detect pressure injuries [area under the receiver operating characteristic curve (AUC)lag 0 days, 0·98, 95% CI 0·95–1·00] was better than that of other methods. Conclusions The IRT-based model is a useful and reliable method for clinical dermatologists and nurses to detect pressure injuries. It can objectively and accurately detect pressure injuries 1 day before visual detection and is therefore able to guide prevention earlier than would otherwise be possible. What is already known about this topic? Detection of pressure injuries at an early stage is challenging.Infrared thermography can be used for the physiological and anatomical evaluation of subcutaneous tissue abnormalities.A convolutional neural network is increasingly used in medical imaging analysis. What does this study add? The optimal cut-off values of the IRT-based model were 0·53 for identifying tissue damage 1 day before visual detection of pressure injury and 0·88 for pressure injury detection on the day visual detection is possible.Infrared thermography-based models can be used by clinical dermatologists and nurses to detect pressure injuries at an early stage objectively and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hello应助小羊琳采纳,获得10
2秒前
wuludie应助苏乘风采纳,获得20
2秒前
sansan发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助123采纳,获得10
6秒前
pluto应助小柒采纳,获得10
7秒前
一个柔弱的读书人完成签到 ,获得积分10
7秒前
笨笨从凝发布了新的文献求助10
8秒前
浮游应助pp采纳,获得10
8秒前
yan完成签到 ,获得积分10
9秒前
慕青应助宅宅粉采纳,获得10
10秒前
ffw1完成签到,获得积分10
10秒前
11秒前
13秒前
Jasper应助Lucky采纳,获得10
15秒前
15秒前
舒服的忆南完成签到,获得积分10
15秒前
忧虑的靖巧完成签到 ,获得积分10
16秒前
补药发布了新的文献求助10
16秒前
星期八的小马完成签到,获得积分10
16秒前
科研通AI6应助lihaifeng采纳,获得10
17秒前
17秒前
小羊琳发布了新的文献求助10
18秒前
谢傲安发布了新的文献求助10
18秒前
wanci应助辛夷采纳,获得10
19秒前
瓜瓜发布了新的文献求助10
20秒前
20秒前
后海发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
JamesPei应助补药采纳,获得10
23秒前
谢傲安完成签到,获得积分10
24秒前
Owen应助bu拿下PHD绝不回头采纳,获得10
25秒前
25秒前
sansan完成签到,获得积分10
26秒前
26秒前
123发布了新的文献求助10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687