亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Throughput Computational Discovery and Intelligent Design of Two-Dimensional Functional Materials for Various Applications

吞吐量 数码产品 计算机科学 高效能源利用 纳米技术 材料科学 工程类 电气工程 电信 无线
作者
Lei Shen,Jun Zhou,Tong Yang,Ming Yang,Yuan Ping Feng
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (6): 572-583 被引量:48
标识
DOI:10.1021/accountsmr.1c00246
摘要

ConspectusNovel technologies and new materials are in high demand for future various applications to overcome the fundamental limitations of current techniques. For example, the nanomaterials are in high demand for the miniaturization of electric devices. Spintronics is one of the most viable solutions for green electric devices. The single-atom catalysts can provide a 100% utilization rate. Heterojunctions hold promise for applications in energy conversion and storage. Two-dimensional (2D) materials show promising applications in various applications because they can be tailored to the specific property on which a technology is based and may be compatible with other technologies. Although the number of experimentally discovered 2D materials is growing, the speed is very slow and only a few dozen 2D materials have been synthesized or exfoliated since the discovery of graphene. Recently, a novel computational technique, dubbed high-throughput computational materials design, has become a burgeoning area of materials science, which is a combination of quantum mechanical theory, materials information, and database construction with intelligent data mining. This new and powerful tool can greatly accelerate the discovery, design, and application of 2D materials by creating a database containing a large number of 2D materials with calculated fundamental properties and then intelligently mining (via high-throughput automation or machine learning) the database in the search for 2D materials with the desired properties for particular applications, such as energy conversion/storage, catalysis, water purification, electronics, and optoelectronics.In this Account, we summarize our recent progress in the emerging area of 2D materials discovery, database construction, 2D functional materials design, and device development by quantum-mechanical modeling, high-throughput calculations, and machine learning inspired by the materials genome concept. We developed an open 2D materials database–2D materials encyclopedia (2DMatPedia; http://www.2dmatpedia.org/), which includes a variety of structural, thermodynamic, mechanical, electronic, and magnetic properties of more than 6000 two-dimensional materials. Using high-throughput computational screening and machine-learning techniques, we identified exotic 2D materials and heterojunctions with desired properties for several applications, such as the electrocatalysis of hydrogen and nitrogen evolution reactions, photocatalysis for water splitting, high Curie temperature ferromagnetic materials, ferromagnetic(ferroelectric) tunnel junctions, piezo(ferro)electricity, and excitonic solar cells. Our open 2D materials database with high-throughput calculations and proper advanced models will greatly reduce the experimental effort in trial and error, narrow the scope for both experimental and theoretical explorations, and thus boost the fast and sustainable development in the area of 2D materials. Despite the significant progress and successful deployment of materials informatics, data-driven materials discovery, high-throughput calculations, and machine learning as a major game change in the area of 2D materials science and technology, future challenges remain in several aspects, which are summarized in the Outlook.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
obedVL完成签到,获得积分10
24秒前
zly完成签到 ,获得积分10
30秒前
eyent燕子关注了科研通微信公众号
43秒前
47秒前
55秒前
kkkk完成签到 ,获得积分10
56秒前
eyent燕子发布了新的文献求助10
1分钟前
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
1分钟前
lalala完成签到,获得积分10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助20
2分钟前
Radarax发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
行走发布了新的文献求助10
3分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
阿酸完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
阿酸关注了科研通微信公众号
4分钟前
ZoyaR完成签到,获得积分10
4分钟前
4分钟前
整齐的蜻蜓完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Tsuzuri完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
怕黑的金鱼完成签到,获得积分10
6分钟前
NexusExplorer应助忧郁的香魔采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4668188
求助须知:如何正确求助?哪些是违规求助? 4048435
关于积分的说明 12520347
捐赠科研通 3741311
什么是DOI,文献DOI怎么找? 2066304
邀请新用户注册赠送积分活动 1095769
科研通“疑难数据库(出版商)”最低求助积分说明 976048