A Convolutional Neural Network for Ultrasound Plane Wave Image Segmentation With a Small Amount of Phase Array Channel Data

人工智能 卷积神经网络 计算机科学 分割 计算机视觉 频道(广播) 模式识别(心理学) 特征(语言学) 波束赋形 特征提取 深度学习 图像分割 人工神经网络 电信 哲学 语言学
作者
Fuben Zhang,Lin Luo,Yu Zhang,Xiaorong Gao,Jinlong Li
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:69 (7): 2270-2281 被引量:5
标识
DOI:10.1109/tuffc.2022.3174637
摘要

Single-angle plane wave has a huge potential in ultrasound high frame rate imaging, which, however, has a number of difficulties, such as low imaging quality and poor segmentation results. To overcome these difficulties, an end-to-end convolutional neural network (CNN) structure from single-angle channel data was proposed to segment images in this article. The network removed the traditional beamforming process and used raw radio frequency (RF) data as input to directly obtain segmented image. The signal features at each depth were extracted and concatenated to obtain the feature map by a special depth signal extraction module, and the feature map was then put into the residual encoder and decoder to obtain the output. A simulated hypoechoic cysts dataset of 2000 and an actual industrial defect dataset of 900 were used for training separately. Good results have been achieved in both simulated medical cysts segmentation and actual industrial defects segmentation. Experiments were conducted on both datasets with phase array sparse element data as input, and segmentation results were obtained for both. On the whole, this work achieved better quality segmented images with shorter processing time from single-angle plane wave channel data using CNNs; compared with other methods, our network has been greatly improved in intersection over union (IOU), F1 score, and processing time. Also, it indicated that the feasibility of applying deep learning in image segmentation can be improved using phase array sparse element data as input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的以云完成签到,获得积分10
刚刚
hentai完成签到,获得积分10
刚刚
ZS0901发布了新的文献求助10
1秒前
元气糖完成签到,获得积分10
1秒前
我是老大应助青木yi采纳,获得10
1秒前
尹山蝶完成签到,获得积分10
1秒前
愉快的孤容完成签到,获得积分10
2秒前
承乐完成签到,获得积分10
3秒前
科研通AI5应助liaoyoujiao采纳,获得10
4秒前
轻松凡英完成签到,获得积分10
4秒前
火山暴涨球技完成签到,获得积分10
5秒前
cn完成签到 ,获得积分10
6秒前
宋二庆完成签到,获得积分10
6秒前
cangcang完成签到,获得积分10
7秒前
李健应助mjiang0502采纳,获得10
7秒前
天天快乐应助别喝他的酒采纳,获得10
8秒前
香蕉觅云应助MING采纳,获得10
8秒前
neckerzhu完成签到 ,获得积分10
10秒前
粗暴的醉卉完成签到,获得积分10
10秒前
弱于一般人类完成签到,获得积分10
12秒前
公西翠萱完成签到,获得积分10
12秒前
科研通AI2S应助白斯特采纳,获得10
12秒前
Alan完成签到 ,获得积分10
12秒前
盛开的芒果完成签到,获得积分10
12秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
KYDZZ应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
海鸥应助科研通管家采纳,获得10
13秒前
betterme完成签到,获得积分10
14秒前
爆米花应助Gracie采纳,获得30
14秒前
颢懿完成签到 ,获得积分10
15秒前
司徒不正完成签到 ,获得积分10
15秒前
15秒前
16秒前
丸子完成签到 ,获得积分10
19秒前
善良的安卉完成签到,获得积分10
19秒前
随便发布了新的文献求助10
19秒前
科研通AI6应助ZBB采纳,获得10
20秒前
maomao1986完成签到,获得积分10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4198198
求助须知:如何正确求助?哪些是违规求助? 3733656
关于积分的说明 11755415
捐赠科研通 3406958
什么是DOI,文献DOI怎么找? 1869425
邀请新用户注册赠送积分活动 925358
科研通“疑难数据库(出版商)”最低求助积分说明 835846