已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design and experimental research of abrasive particle detection sensor based on coil magnetic field

坡莫合金 材料科学 电磁线圈 灵敏度(控制系统) 感应式传感器 磁场 光电子学 声学 电气工程 电子工程 磁化 物理 量子力学 工程类
作者
Changzhi Gu,Chenzhao Bai,Yuezhu Cheng,Haotian Shi,Lebile Ilerioluwa,H. Zhang,Yuqing Sun
出处
期刊:Journal of Instrumentation [Institute of Physics]
卷期号:17 (06): P06017-P06017 被引量:4
标识
DOI:10.1088/1748-0221/17/06/p06017
摘要

Abstract This paper develops a dual-coil sensor integrated with high-permeability materials based on inductive sensor technology to detect wear particles in oil. This method is mainly used for online detection and fault analysis of pollutants in hydraulic and lubricating oil systems. The sensor innovatively embeds permalloy into the sensing unit of the sensor to generate high gradient magnetic field in the sensing area, consequently improving the detection sensitivity of the sensor. The detection unit consists of two pieces of permalloy and two plane coils. The permalloys have a rectangular groove at the center, which is placed in line with the inner hole of the coil, thereby forming the detection area. Particles in the microchannel can be detected as they flow through the detection area. The article theoretically analyzes the working principle of the sensor and establishes a verification experiment system. The experimental results show that after adding permalloy to the sensing unit, the signal-to-noise ratio (SNR) of iron particles is increased by more than 40%, and the SNR of copper particles is increased by more than 30%. As the particle size increases, the SNR decreases. Using this design, the range of the lower limit detection for ferromagnetic metal particles increased to 10–15 μm, while that of non-ferromagnetic metal particles increased to 60 μm. Compared with traditional inductive sensors, the addition of permalloy greatly improves the sensor's performance, which significantly boosts the sensitivity of the dual-coil type sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智三问完成签到 ,获得积分10
1秒前
lmy发布了新的文献求助10
3秒前
科研通AI5应助khan采纳,获得10
3秒前
duan完成签到 ,获得积分10
3秒前
顾矜应助echo采纳,获得10
4秒前
小樱颖子完成签到 ,获得积分10
7秒前
8秒前
归陌完成签到 ,获得积分10
8秒前
悦天思完成签到,获得积分10
9秒前
coatguy完成签到,获得积分20
10秒前
李阳完成签到 ,获得积分10
10秒前
coatguy发布了新的文献求助30
14秒前
赘婿应助Joy采纳,获得10
16秒前
浮游应助Ki_Ayasato采纳,获得10
16秒前
17秒前
公冶愚志完成签到 ,获得积分20
17秒前
Catherine完成签到,获得积分10
23秒前
khan发布了新的文献求助10
24秒前
FFFFF完成签到 ,获得积分0
24秒前
上官若男应助星工捷卫采纳,获得10
25秒前
李月月完成签到 ,获得积分20
26秒前
上官若男应助Catherine采纳,获得10
26秒前
27秒前
可靠蜗牛完成签到,获得积分10
29秒前
小林同学0219完成签到 ,获得积分10
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
31秒前
wanci应助科研通管家采纳,获得30
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
xxfsx应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
风清扬应助科研通管家采纳,获得30
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
tuanheqi应助科研通管家采纳,获得80
32秒前
33秒前
李奚完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185643
求助须知:如何正确求助?哪些是违规求助? 4371016
关于积分的说明 13611726
捐赠科研通 4223303
什么是DOI,文献DOI怎么找? 2316324
邀请新用户注册赠送积分活动 1314922
关于科研通互助平台的介绍 1263871