已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification

多路复用 免疫组织化学 污渍 染色 病理 免疫荧光 反褶积 计算机科学 人工智能 生物 医学 生物信息学 抗体 免疫学 算法
作者
Parmida Ghahremani,Yanyun Li,Arie Kaufman,R. Vanguri,Noah F. Greenwald,Michael Angelo,Travis J. Hollmann,Saad Nadeem
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (4): 401-412 被引量:81
标识
DOI:10.1038/s42256-022-00471-x
摘要

Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is broadly used in diagnostic pathology laboratories for patient care. To date, clinical reporting is predominantly qualitative or semi-quantitative. By creating a multitask deep learning framework referred to as DeepLIIF, we present a single-step solution to stain deconvolution/separation, cell segmentation, and quantitative single-cell IHC scoring. Leveraging a unique de novo dataset of co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we segment and translate low-cost and prevalent IHC slides to more expensive-yet-informative mpIF images, while simultaneously providing the essential ground truth for the superimposed brightfield IHC channels. Moreover, a new nuclear-envelop stain, LAP2beta, with high (>95%) cell coverage is introduced to improve cell delineation/segmentation and protein expression quantification on IHC slides. By simultaneously translating input IHC images to clean/separated mpIF channels and performing cell segmentation/classification, we show that our model trained on clean IHC Ki67 data can generalize to more noisy and artifact-ridden images as well as other nuclear and non-nuclear markers such as CD3, CD8, BCL2, BCL6, MYC, MUM1, CD10, and TP53. We thoroughly evaluate our method on publicly available benchmark datasets as well as against pathologists' semi-quantitative scoring. The code, the pre-trained models, along with easy-to-run containerized docker files as well as Google CoLab project are available at https://github.com/nadeemlab/deepliif.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鲤鱼完成签到 ,获得积分10
1秒前
RJC发布了新的文献求助20
3秒前
那一片海发布了新的文献求助10
4秒前
6秒前
8秒前
11秒前
leeky发布了新的文献求助10
11秒前
12秒前
15秒前
leeky完成签到,获得积分20
16秒前
小九九发布了新的文献求助10
16秒前
avicii完成签到,获得积分10
17秒前
sopha发布了新的文献求助10
17秒前
yihao发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
22秒前
BryanCh发布了新的文献求助10
22秒前
二三应助苏打水采纳,获得100
23秒前
24秒前
德玛西亚发布了新的文献求助10
26秒前
26秒前
29秒前
29秒前
29秒前
33秒前
斯文败类应助RJC采纳,获得20
33秒前
陆家麟发布了新的文献求助10
33秒前
35秒前
传奇3应助许婉琦采纳,获得10
38秒前
39秒前
耶啵完成签到 ,获得积分10
40秒前
40秒前
41秒前
paulmichael发布了新的文献求助10
43秒前
所所应助Ang采纳,获得10
44秒前
西柚发布了新的文献求助30
44秒前
liu123发布了新的文献求助10
44秒前
GGb发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060347
求助须知:如何正确求助?哪些是违规求助? 3598746
关于积分的说明 11431508
捐赠科研通 3323231
什么是DOI,文献DOI怎么找? 1827176
邀请新用户注册赠送积分活动 897842
科研通“疑难数据库(出版商)”最低求助积分说明 818656