Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification

多路复用 免疫组织化学 污渍 染色 病理 免疫荧光 反褶积 计算机科学 人工智能 生物 医学 生物信息学 抗体 免疫学 算法
作者
Parmida Ghahremani,Yanyun Li,Arie Kaufman,R. Vanguri,Noah F. Greenwald,Michael Angelo,Travis J. Hollmann,Saad Nadeem
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (4): 401-412 被引量:78
标识
DOI:10.1038/s42256-022-00471-x
摘要

Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is broadly used in diagnostic pathology laboratories for patient care. To date, clinical reporting is predominantly qualitative or semi-quantitative. By creating a multitask deep learning framework referred to as DeepLIIF, we present a single-step solution to stain deconvolution/separation, cell segmentation, and quantitative single-cell IHC scoring. Leveraging a unique de novo dataset of co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we segment and translate low-cost and prevalent IHC slides to more expensive-yet-informative mpIF images, while simultaneously providing the essential ground truth for the superimposed brightfield IHC channels. Moreover, a new nuclear-envelop stain, LAP2beta, with high (>95%) cell coverage is introduced to improve cell delineation/segmentation and protein expression quantification on IHC slides. By simultaneously translating input IHC images to clean/separated mpIF channels and performing cell segmentation/classification, we show that our model trained on clean IHC Ki67 data can generalize to more noisy and artifact-ridden images as well as other nuclear and non-nuclear markers such as CD3, CD8, BCL2, BCL6, MYC, MUM1, CD10, and TP53. We thoroughly evaluate our method on publicly available benchmark datasets as well as against pathologists' semi-quantitative scoring. The code, the pre-trained models, along with easy-to-run containerized docker files as well as Google CoLab project are available at https://github.com/nadeemlab/deepliif.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lh完成签到,获得积分10
1秒前
1秒前
2秒前
孤独士晋发布了新的文献求助10
2秒前
俭朴的凝荷完成签到,获得积分20
3秒前
打打应助张宇鑫采纳,获得10
3秒前
寒冷妙梦完成签到,获得积分10
5秒前
6秒前
6秒前
Summeryz920发布了新的文献求助10
7秒前
欣喜眼神发布了新的文献求助10
8秒前
8秒前
pluto应助祝好采纳,获得20
10秒前
pazuzu发布了新的文献求助10
12秒前
13秒前
完美世界应助lienne采纳,获得10
14秒前
Justinliken发布了新的文献求助10
19秒前
桐桐应助苏雨康采纳,获得10
19秒前
CodeCraft应助pazuzu采纳,获得10
20秒前
Summeryz920发布了新的文献求助10
23秒前
简单的大白完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
25秒前
26秒前
26秒前
27秒前
明亮无颜发布了新的文献求助30
28秒前
搜集达人应助健壮的绿凝采纳,获得10
28秒前
H..发布了新的文献求助10
29秒前
Young发布了新的文献求助10
30秒前
彭于晏应助Summeryz920采纳,获得10
30秒前
30秒前
苏雨康发布了新的文献求助10
31秒前
尛瞐慶成发布了新的文献求助10
32秒前
Dannnn发布了新的文献求助10
34秒前
优雅颜发布了新的文献求助30
35秒前
缓慢思枫发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976