Genetic Programming for Image Classification: A New Program Representation With Flexible Feature Reuse

遗传程序设计 计算机科学 可解释性 人工智能 上下文图像分类 特征(语言学) 机器学习 模式识别(心理学) 特征提取 水准点(测量) 遗传算法 图像(数学) 集合(抽象数据类型) 数据挖掘 哲学 程序设计语言 地理 语言学 大地测量学
作者
Qinglan Fan,Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 460-474 被引量:23
标识
DOI:10.1109/tevc.2022.3169490
摘要

Extracting effective features from images is crucial for image classification, but it is challenging due to high variations across images. Genetic programming (GP) has become a promising machine-learning approach to feature learning in image classification. The representation of existing GP-based image classification methods is usually the tree-based structure. These methods typically learn useful image features according to the output of the GP program's root node. However, they are not flexible enough in feature learning since the features produced by internal nodes of the GP program have seldom been directly used. In this article, we propose a new image classification approach using GP with a new program structure, which can flexibly reuse features generated from different nodes, including internal nodes of the GP program. The new method can automatically learn various informative image features based on the new function set and terminal set for effective and efficient image classification. Furthermore, instead of relying on a predefined classification algorithm, the proposed approach can automatically select a suitable classification algorithm based on the learned features and conduct classification simultaneously in a single evolved GP program for an image classification task. The experimental results on 12 benchmark datasets of varying difficulty suggest that the new approach achieves better performance than many state-of-the-art methods. Further analysis demonstrates the effectiveness and efficiency of the flexible feature reuse in the proposed approach. The analysis of evolved GP programs/solutions shows their potentially high interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑捕发布了新的文献求助10
1秒前
粥粥粥发布了新的文献求助10
1秒前
2秒前
滕皓轩发布了新的文献求助10
3秒前
勤恳完成签到,获得积分10
3秒前
4秒前
zy发布了新的文献求助10
4秒前
Yun发布了新的文献求助30
4秒前
三金完成签到,获得积分10
5秒前
7秒前
威武好吐司完成签到 ,获得积分10
7秒前
rmbsLHC完成签到,获得积分10
7秒前
Morris完成签到,获得积分10
8秒前
勤劳夕阳发布了新的文献求助10
8秒前
9秒前
Ivy发布了新的文献求助10
10秒前
10秒前
chenchunlan96发布了新的文献求助10
10秒前
10秒前
落樱幻梦染星尘完成签到,获得积分10
11秒前
12秒前
情怀应助Muhebbet采纳,获得10
13秒前
坦率的怜容完成签到,获得积分10
13秒前
爱喝可乐发布了新的文献求助10
14秒前
15秒前
悦耳短靴发布了新的文献求助30
15秒前
15秒前
15秒前
斯文败类应助随便取采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
zzz关注了科研通微信公众号
16秒前
端庄千青发布了新的文献求助10
17秒前
mtt关闭了mtt文献求助
17秒前
Ava应助Du采纳,获得10
17秒前
小白应助zhzhzh采纳,获得10
18秒前
阔达的蝴蝶完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814