Uncertainty-Guided Voxel-Level Supervised Contrastive Learning for Semi-Supervised Medical Image Segmentation

过度拟合 计算机科学 人工智能 半监督学习 模式识别(心理学) 特征学习 机器学习 分割 监督学习 特征(语言学) 一致性(知识库) 体素 人工神经网络 语言学 哲学
作者
Yu Hua,Xin Shu,Zizhou Wang,Lei Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (04) 被引量:27
标识
DOI:10.1142/s0129065722500162
摘要

Semi-supervised learning reduces overfitting and facilitates medical image segmentation by regularizing the learning of limited well-annotated data with the knowledge provided by a large amount of unlabeled data. However, there are many misuses and underutilization of data in conventional semi-supervised methods. On the one hand, the model will deviate from the empirical distribution under the training of numerous unlabeled data. On the other hand, the model treats labeled and unlabeled data differently and does not consider inter-data information. In this paper, a semi-supervised method is proposed to exploit unlabeled data to further narrow the gap between the semi-supervised model and its fully-supervised counterpart. Specifically, the architecture of the proposed method is based on the mean-teacher framework, and the uncertainty estimation module is improved to impose constraints of consistency and guide the selection of feature representation vectors. Notably, a voxel-level supervised contrastive learning module is devised to establish a contrastive relationship between feature representation vectors, whether from labeled or unlabeled data. The supervised manner ensures that the network learns the correct knowledge, and the dense contrastive relationship further extracts information from unlabeled data. The above overcomes data misuse and underutilization in semi-supervised frameworks. Moreover, it favors the feature representation with intra-class compactness and inter-class separability and gains extra performance. Extensive experimental results on the left atrium dataset from Atrial Segmentation Challenge demonstrate that the proposed method has superior performance over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓁叶发布了新的文献求助10
刚刚
没有昵称发布了新的文献求助10
2秒前
3秒前
6秒前
老杜完成签到,获得积分10
6秒前
6秒前
优美若雁完成签到,获得积分10
7秒前
科研通AI5应助Hy.采纳,获得10
9秒前
小鱼儿发布了新的文献求助10
10秒前
11秒前
Blank发布了新的文献求助10
12秒前
13秒前
善学以致用应助偷乐采纳,获得10
14秒前
李健的粉丝团团长应助ZPH采纳,获得10
14秒前
17秒前
水上汀州完成签到,获得积分10
17秒前
gemini0615发布了新的文献求助20
17秒前
SWD完成签到,获得积分10
18秒前
笑点低听寒完成签到,获得积分10
18秒前
miemie发布了新的文献求助10
18秒前
19秒前
蛀牙牙完成签到,获得积分10
19秒前
rodrisk完成签到 ,获得积分10
20秒前
自由寻冬发布了新的文献求助10
21秒前
23秒前
cyn0762完成签到,获得积分10
24秒前
不安的松完成签到 ,获得积分10
27秒前
28秒前
ZPH发布了新的文献求助10
28秒前
科研通AI5应助gemini0615采纳,获得30
30秒前
脑洞疼应助miemie采纳,获得10
31秒前
音符丷完成签到 ,获得积分10
32秒前
33秒前
南信第一深情完成签到,获得积分10
35秒前
英俊的铭应助无心的念蕾采纳,获得10
37秒前
gungun发布了新的文献求助30
38秒前
Chief完成签到,获得积分0
39秒前
40秒前
bellapp完成签到 ,获得积分10
41秒前
领导范儿应助siiiiixx采纳,获得10
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784087
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240756
捐赠科研通 3044714
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800191
科研通“疑难数据库(出版商)”最低求助积分说明 759222