Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next

人工神经网络 搭配(遥感) 计算机科学 偏微分方程 功能(生物学) 航程(航空) 有限元法 人工智能 数学 机器学习 物理 数学分析 工程类 热力学 航空航天工程 生物 进化生物学
作者
Salvatore Cuomo,Vincenzo Schiano di Cola,Fabio Giampaolo,Gianluigi Rozza,Maziar Raissi,Francesco Piccialli
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2201.05624
摘要

Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations, like Partial Differential Equations (PDE), as a component of the neural network itself. PINNs are nowadays used to solve PDEs, fractional equations, integral-differential equations, and stochastic PDEs. This novel methodology has arisen as a multi-task learning framework in which a NN must fit observed data while reducing a PDE residual. This article provides a comprehensive review of the literature on PINNs: while the primary goal of the study was to characterize these networks and their related advantages and disadvantages. The review also attempts to incorporate publications on a broader range of collocation-based physics informed neural networks, which stars form the vanilla PINN, as well as many other variants, such as physics-constrained neural networks (PCNN), variational hp-VPINN, and conservative PINN (CPINN). The study indicates that most research has focused on customizing the PINN through different activation functions, gradient optimization techniques, neural network structures, and loss function structures. Despite the wide range of applications for which PINNs have been used, by demonstrating their ability to be more feasible in some contexts than classical numerical techniques like Finite Element Method (FEM), advancements are still possible, most notably theoretical issues that remain unresolved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助时尚语蓉采纳,获得10
1秒前
爆米花应助lhk采纳,获得10
1秒前
小蘑菇应助123采纳,获得10
2秒前
隐形曼青应助慕何采纳,获得10
2秒前
昏睡的蟠桃应助温暖烨霖采纳,获得150
2秒前
3秒前
雪白的新柔完成签到 ,获得积分10
3秒前
完美世界应助JoshuaChen采纳,获得10
4秒前
seall发布了新的文献求助10
4秒前
一叶扁舟完成签到,获得积分10
4秒前
4秒前
imkhun1021发布了新的文献求助10
5秒前
5秒前
6秒前
HMYX完成签到 ,获得积分10
6秒前
yolo发布了新的文献求助10
7秒前
7秒前
顺利的荔枝完成签到,获得积分10
7秒前
8秒前
奋斗的紫易完成签到,获得积分10
8秒前
8秒前
Glufo完成签到,获得积分10
8秒前
10秒前
10秒前
大个应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
Lindsay应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
肥肥完成签到 ,获得积分10
12秒前
典雅的静发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
幸福乐蕊完成签到,获得积分10
14秒前
完美世界应助zwhy采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259489
求助须知:如何正确求助?哪些是违规求助? 4421116
关于积分的说明 13761878
捐赠科研通 4294896
什么是DOI,文献DOI怎么找? 2356644
邀请新用户注册赠送积分活动 1353069
关于科研通互助平台的介绍 1314071