亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of 3-year all-cause and cardiovascular cause mortality in a prospective percutaneous coronary intervention registry: Machine learning model outperforms conventional clinical risk scores

医学 蒂米 经皮冠状动脉介入治疗 传统PCI 内科学 人口 心脏病学 弗雷明翰风险评分 心肌梗塞 疾病 环境卫生
作者
Paul‐Adrian Călburean,Paul Grebenișan,Ioana-Andreea Nistor,Krisztina Pál,Victor Vacariu,Reka-Katalin Drincal,Oana Țepes,Iulia Bârlea,Ioana Şuş,Cristina Somkereki,Valentin Șimon,Zoltán Demjén,István Adorján,Irina Pinitilie,Anca Teodora Dolcoș,Tiberiu Oltean,Marius Mărușteri,Elena Druică,László Hadadi
出处
期刊:Atherosclerosis [Elsevier]
卷期号:350: 33-40 被引量:24
标识
DOI:10.1016/j.atherosclerosis.2022.03.028
摘要

Machine learning (ML) models have been proposed as a prognostic clinical tool and superiority over clinical risk scores is yet to be established. Our aim was to analyse the performance of predicting 3-year all-cause- and cardiovascular cause mortality using ML techniques and compare it with clinical scores in a percutaneous coronary intervention (PCI) population.An all-comers patient population treated by PCI in a tertiary cardiovascular centre that have been included prospectively in the local registry between January 2016-December 2017 was analysed. The ML model was trained to predict 3-year mortality and prediction performance was compared with that of GRACE, ACEF, SYNTAX II 2020 and TIMI scores.A total number of 2242 patients were included with 12.1% and 14.9% 3-year cardiovascular and -all-cause mortality, respectively. The area under receiver operator characteristic curve for the ML model was higher than that of GRACE, ACEF, SYNTAX II and TIMI scores: 0.886 vs. 0.797, 0.792, 0.757 and 0.696 for 3-year cardiovascular- and 0.854 vs. 0.762, 0.764, 0.730 and 0.691 for 3-year all-cause mortality prediction, respectively (all p ≤ 0.001). Similarly, the area under precision-recall curve for the ML model was higher than that of GRACE, ACEF, SYNTAX II and TIMI scores: 0.729 vs. 0.474, 0.469, 0.365 and 0.389 for 3-year cardiovascular- and 0.718 vs. 0.483, 0.466, 0.388 and 0.395 for 3-year all-cause mortality prediction, respectively (all p ≤ 0.001).The ML model was superior in predicting 3-year cardiovascular- and all-cause mortality when compared to clinical scores in a prospective PCI registry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HDrinnk完成签到,获得积分10
1秒前
logical发布了新的文献求助10
4秒前
激昂的如柏完成签到,获得积分10
4秒前
徐志豪发布了新的文献求助10
5秒前
机灵的衬衫完成签到 ,获得积分10
6秒前
6秒前
凤里完成签到 ,获得积分10
6秒前
8秒前
9秒前
所所应助月亮也赖床采纳,获得10
12秒前
19秒前
19秒前
璐璐在这完成签到,获得积分10
25秒前
阳光大山完成签到 ,获得积分10
25秒前
靓丽衫完成签到 ,获得积分10
26秒前
26秒前
27秒前
浮游应助MSharp_采纳,获得10
28秒前
GLv完成签到,获得积分10
31秒前
肾宝完成签到,获得积分10
31秒前
32秒前
星辰发布了新的文献求助10
33秒前
8D发布了新的文献求助10
34秒前
自由的无色完成签到 ,获得积分10
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
科目三应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得30
34秒前
Criminology34应助科研通管家采纳,获得10
34秒前
Criminology34应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得10
35秒前
FashionBoy应助12123浪采纳,获得10
35秒前
Joseph_sss完成签到 ,获得积分10
35秒前
柯学家完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144