已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Trends in vision-based machine learning techniques for plant disease identification: A systematic review

计算机科学 机器学习 人工智能 领域(数学) 稀缺 鉴定(生物学) 植物病害 精准农业 农业 深度学习 数据科学 生物技术 生物 植物 数学 经济 微观经济学 纯数学 生态学
作者
Poornima Singh Thakur,Pritee Khanna,Tanuja Sheorey,Aparajita Ojha
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:208: 118117-118117 被引量:132
标识
DOI:10.1016/j.eswa.2022.118117
摘要

Globally, all the major crops are significantly affected by diseases every year, as manual inspection across diverse fields is time-consuming, tedious, and requires expert knowledge. This leads to significant crop loss in different parts of the world. To provide effective solutions, several smart agriculture solutions are deployed for the control of pests and plant diseases using vision-based machine learning techniques. Despite rapid growth in the field, not many methods have been explored for their suitability in real-time applications. Several open challenges need to be addressed for the applicability of machine learning techniques in IoT-based smart agriculture solutions. Starting from data capturing methods and the availability of public datasets, the present paper provides a comprehensive review of vision-based machine learning techniques for plant disease detection. Initially, 1337 articles were selected from various scholarly resources to perform the survey. Based on the saliency of approaches, 148 articles are reviewed in this paper. Interestingly, a significant amount of research in this direction is taken up by Chinese and Indian researchers, and deep learning is the current research trend, as in other fields. The review concludes that a majority of existing methods exhibit their efficacy on public datasets captured mostly in controlled environmental conditions, but their generalization capability for in-field plant disease detection has not been explored. Lightweight CNN-based methods, on the other hand, have been designed for a limited number of diseases only, and are generally trained on small datasets. The scarcity of large-scale, in-field public datasets is one of the major bottlenecks in developing solutions that can work for a wide variety of plant diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huijuan发布了新的文献求助10
1秒前
keke发布了新的文献求助10
2秒前
3秒前
5秒前
靓丽冬灵应助如意的尔竹采纳,获得10
7秒前
庄冬丽完成签到,获得积分10
7秒前
贰鸟应助chenchen采纳,获得10
7秒前
夏xia完成签到,获得积分10
8秒前
李爱国应助SUE采纳,获得10
10秒前
小编一枚发布了新的文献求助10
13秒前
努力的小明明完成签到,获得积分10
14秒前
waikeyan完成签到,获得积分10
14秒前
Monster完成签到,获得积分10
15秒前
爱听歌依波完成签到 ,获得积分10
16秒前
如意的尔竹给如意的尔竹的求助进行了留言
17秒前
hu发布了新的文献求助10
17秒前
田様应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
柯一一应助科研通管家采纳,获得10
17秒前
司空豁应助科研通管家采纳,获得10
17秒前
17秒前
思源应助wym0072003采纳,获得10
18秒前
keke完成签到,获得积分10
21秒前
melisa完成签到,获得积分10
22秒前
Guoguocheng完成签到,获得积分10
24秒前
啸锋完成签到 ,获得积分10
26秒前
斯文败类应助失眠的耳机采纳,获得10
27秒前
长江完成签到 ,获得积分10
33秒前
33秒前
李爱国应助jzhou65采纳,获得10
33秒前
34秒前
wym0072003发布了新的文献求助10
39秒前
袁钰琳完成签到 ,获得积分10
39秒前
41秒前
41秒前
LJX完成签到,获得积分10
42秒前
卡恩完成签到 ,获得积分10
44秒前
jzhou65发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924167
求助须知:如何正确求助?哪些是违规求助? 3468934
关于积分的说明 10954281
捐赠科研通 3198335
什么是DOI,文献DOI怎么找? 1767035
邀请新用户注册赠送积分活动 856635
科研通“疑难数据库(出版商)”最低求助积分说明 795541