已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling of Spatial-Temporal Dependency in Traffic Flow Data for Traffic Forecasting

流量(计算机网络) 依赖关系(UML) 计算机科学 基于Kerner三相理论的交通拥堵重构 运输工程 工程类 交通拥挤 人工智能 计算机安全
作者
Yan Ma,Shiyong Lan,Wenwu Wang,Weikang Huang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4142192
摘要

Accurate traffic forecasting enables efficient traffic management. However, traffic prediction is a challenging task, due to the fact that the traffic system itself is composed of complex interactions of multiple agents (e.g. randomly mixed vehicles with different mechanical characteristics, drivers with diverse driving habits, and road network with unique spatial-temporal correlation attributes among various nodes). To model these interactions, existing methods usually use a given static spatial adjacency graph to represent spatial-temporal dependencies. As a result, they can hardly capture the dynamic spatial-temporal relationships in the traffic network. This paper proposes a new Multi-Head self-Attention based Spatial-Temporal Information Graph Convolutional Networks (MH-ASTIGCN) for traffic flow forecasting where dynamic dependencies between traffic nodes are modelled for predicting the traffic evolution. Firstly, a data-driven strategy for generating temporal information graphs is proposed to amend the spatial correlation that cannot be fully captured by static spatial adjacency graphs. Secondly, we design a novel spatial-temporal attention mechanism in our MH-ASTIGCN, considering the similarity of the traffic patterns between nodes in a road network as a priori, which can not only learn local spatial-temporal dependence, but also capture global deep spatial correlation and temporal features. Thirdly, we use different attention heads in the multi-head attention mechanism to capture the complex multi-scale dependence among the neighborhoods of the spatial graph. Finally, we extend the graph convolutional neural network by integrating our improved attention mechanism to predict traffic flow. Experiments on several real-world data sets show that our proposed method outperforms several recent baseline methods, especially in long-term prediction. We will release our code at https://github.com/SYLan2019/MH-ASTIGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ah发布了新的文献求助10
刚刚
3秒前
0000完成签到 ,获得积分10
4秒前
乐观的小鸡完成签到,获得积分10
4秒前
zhouling完成签到,获得积分10
6秒前
怕黑行恶完成签到,获得积分10
7秒前
FOODHUA完成签到,获得积分10
8秒前
8秒前
8秒前
大模型应助友好冷雪采纳,获得10
9秒前
11秒前
聪明勇敢有力量完成签到,获得积分10
13秒前
小樊同学发布了新的文献求助10
13秒前
yznfly应助nextconnie采纳,获得150
14秒前
17秒前
Ava应助小樊同学采纳,获得10
19秒前
紫麒麟完成签到,获得积分10
21秒前
寇寇完成签到 ,获得积分10
22秒前
从容芮应助科研通管家采纳,获得50
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
coolkid应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
慕青应助Captain采纳,获得10
23秒前
ChenNN完成签到,获得积分10
24秒前
英姑应助Trends采纳,获得10
27秒前
女王完成签到 ,获得积分10
29秒前
water应助小乔采纳,获得10
35秒前
KInn关注了科研通微信公众号
36秒前
kokoko完成签到,获得积分10
38秒前
mo发布了新的文献求助10
43秒前
赖茜完成签到 ,获得积分10
45秒前
鸣笛应助Tangtang561o采纳,获得30
46秒前
47秒前
48秒前
50秒前
香蕉觅云应助Wei采纳,获得10
50秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903681
求助须知:如何正确求助?哪些是违规求助? 3448536
关于积分的说明 10853380
捐赠科研通 3173979
什么是DOI,文献DOI怎么找? 1753673
邀请新用户注册赠送积分活动 847858
科研通“疑难数据库(出版商)”最低求助积分说明 790486