Modeling of Spatial-Temporal Dependency in Traffic Flow Data for Traffic Forecasting

流量(计算机网络) 依赖关系(UML) 计算机科学 基于Kerner三相理论的交通拥堵重构 运输工程 工程类 交通拥挤 人工智能 计算机安全
作者
Yan Ma,Shiyong Lan,Wenwu Wang,Weikang Huang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4142192
摘要

Accurate traffic forecasting enables efficient traffic management. However, traffic prediction is a challenging task, due to the fact that the traffic system itself is composed of complex interactions of multiple agents (e.g. randomly mixed vehicles with different mechanical characteristics, drivers with diverse driving habits, and road network with unique spatial-temporal correlation attributes among various nodes). To model these interactions, existing methods usually use a given static spatial adjacency graph to represent spatial-temporal dependencies. As a result, they can hardly capture the dynamic spatial-temporal relationships in the traffic network. This paper proposes a new Multi-Head self-Attention based Spatial-Temporal Information Graph Convolutional Networks (MH-ASTIGCN) for traffic flow forecasting where dynamic dependencies between traffic nodes are modelled for predicting the traffic evolution. Firstly, a data-driven strategy for generating temporal information graphs is proposed to amend the spatial correlation that cannot be fully captured by static spatial adjacency graphs. Secondly, we design a novel spatial-temporal attention mechanism in our MH-ASTIGCN, considering the similarity of the traffic patterns between nodes in a road network as a priori, which can not only learn local spatial-temporal dependence, but also capture global deep spatial correlation and temporal features. Thirdly, we use different attention heads in the multi-head attention mechanism to capture the complex multi-scale dependence among the neighborhoods of the spatial graph. Finally, we extend the graph convolutional neural network by integrating our improved attention mechanism to predict traffic flow. Experiments on several real-world data sets show that our proposed method outperforms several recent baseline methods, especially in long-term prediction. We will release our code at https://github.com/SYLan2019/MH-ASTIGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aldehyde应助老迟到的海秋采纳,获得60
2秒前
搜集达人应助Jennie采纳,获得10
3秒前
3秒前
4秒前
5秒前
丘比特应助Queena采纳,获得10
6秒前
Eric_Zhang发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
Yolo完成签到,获得积分10
9秒前
生动的书文完成签到,获得积分10
10秒前
洁净艳一发布了新的文献求助10
10秒前
11秒前
威武无施发布了新的文献求助10
11秒前
Tingting发布了新的文献求助10
13秒前
14秒前
塔菲尔发布了新的文献求助20
14秒前
14秒前
16秒前
yanan发布了新的文献求助10
17秒前
17秒前
18秒前
威武无施完成签到,获得积分10
18秒前
djbj2022发布了新的文献求助10
19秒前
JamesPei应助斑驳采纳,获得10
20秒前
小下完成签到,获得积分20
20秒前
打打应助一颗苹果采纳,获得10
21秒前
21秒前
万能图书馆应助Tingting采纳,获得10
22秒前
22秒前
22秒前
23秒前
欢喜的鹏涛完成签到,获得积分10
23秒前
23秒前
伊宁发布了新的文献求助10
26秒前
九九发布了新的文献求助10
26秒前
可爱的函函应助zx采纳,获得10
28秒前
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4116668
求助须知:如何正确求助?哪些是违规求助? 3655161
关于积分的说明 11573999
捐赠科研通 3358411
什么是DOI,文献DOI怎么找? 1844847
邀请新用户注册赠送积分活动 910438
科研通“疑难数据库(出版商)”最低求助积分说明 826945