Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization

进化算法 计算机科学 选择(遗传算法) 任务(项目管理) 进化计算 人口 多目标优化 计算智能 进化规划 人工智能 机器学习 工程类 社会学 人口学 系统工程
作者
Ke-Jing Du,Jian-Yu Li,Hua Wang,Jun Zhang
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1211-1228 被引量:20
标识
DOI:10.1007/s40747-022-00650-8
摘要

Abstract Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task optimization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimization problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effectiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising direction for solving MO-MTOP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助ZD采纳,获得10
刚刚
酷炫的菠萝完成签到,获得积分10
1秒前
耕牛热完成签到,获得积分10
1秒前
2秒前
林也发布了新的文献求助30
3秒前
祥小哥发布了新的文献求助10
3秒前
4秒前
Orange应助跳跃碧灵采纳,获得10
4秒前
4秒前
开心青旋完成签到,获得积分10
6秒前
朝菌发布了新的文献求助10
6秒前
小王完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
1111完成签到 ,获得积分10
7秒前
7秒前
8秒前
稀饭红红儿完成签到,获得积分10
8秒前
9秒前
SY完成签到,获得积分20
9秒前
AaronW完成签到,获得积分10
9秒前
燕子发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
苏杰完成签到 ,获得积分10
10秒前
ty7889发布了新的文献求助10
11秒前
pyk完成签到,获得积分10
11秒前
12秒前
12秒前
杨琪应助煮梅采纳,获得30
12秒前
12秒前
Jad_发布了新的文献求助10
14秒前
chengya完成签到,获得积分10
16秒前
李健应助Rosaline采纳,获得10
16秒前
Minghao88完成签到,获得积分10
16秒前
YunJieheng完成签到,获得积分10
16秒前
科研通AI6应助幽默的以山采纳,获得30
16秒前
青青完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4297062
求助须知:如何正确求助?哪些是违规求助? 3822631
关于积分的说明 11968064
捐赠科研通 3464465
什么是DOI,文献DOI怎么找? 1900205
邀请新用户注册赠送积分活动 948305
科研通“疑难数据库(出版商)”最低求助积分说明 850707