Acceptance of Medical Treatment Regimens Provided by AI vs. Human

现象 心理学 归属 透视图(图形) 非人性化 感知 背景(考古学) 社会心理学 医学 心理治疗师 认识论 人工智能 计算机科学 社会学 古生物学 哲学 神经科学 人类学 生物
作者
Jiahua Wu,Liying Xu,Feng Yu,Kaiping Peng
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (1): 110-110 被引量:8
标识
DOI:10.3390/app12010110
摘要

Along with the increasing development of information technology, the interaction between artificial intelligence and humans is becoming even more frequent. In this context, a phenomenon called “medical AI aversion” has emerged, in which the same behaviors of medical AI and humans elicited different responses. Medical AI aversion can be understood in terms of the way that people attribute mind capacities to different targets. It has been demonstrated that when medical professionals dehumanize patients—making fewer mental attributions to patients and, to some extent, not perceiving and treating them as full human—it leads to more painful and effective treatment options. From the patient’s perspective, will painful treatment options be unacceptable when they perceive the doctor as a human but disregard his or her own mental abilities? Is it possible to accept a painful treatment plan because the doctor is artificial intelligence? Based on the above, the current study investigated the above questions and the phenomenon of medical AI aversion in a medical context. Through three experiments it was found that: (1) human doctor was accepted more when patients were faced with the same treatment plan; (2) there was an interactional effect between the treatment subject and the nature of the treatment plan, and, therefore, affected the acceptance of the treatment plan; and (3) experience capacities mediated the relationship between treatment provider (AI vs. human) and treatment plan acceptance. Overall, this study attempted to explain the phenomenon of medical AI aversion from the mind perception theory and the findings are revealing at the applied level for guiding the more rational use of AI and how to persuade patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yabocai发布了新的文献求助10
1秒前
斯文败类应助xuezhao采纳,获得10
1秒前
1秒前
1秒前
害羞晋鹏发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
华仔应助wu采纳,获得10
3秒前
友好的小虾米完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
无花果应助木木圆采纳,获得10
5秒前
负责月光发布了新的文献求助10
5秒前
不安的从安应助鸑鷟采纳,获得10
6秒前
6秒前
踏实口红发布了新的文献求助10
7秒前
8秒前
zz发布了新的文献求助10
8秒前
nianbing发布了新的文献求助10
9秒前
9秒前
好的好的发布了新的文献求助10
10秒前
10秒前
小河发布了新的文献求助10
10秒前
10秒前
11秒前
桐桐应助yabocai采纳,获得10
11秒前
结实的蘑菇完成签到 ,获得积分10
11秒前
Orange应助冰淇琳采纳,获得10
11秒前
fancynancy应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
否极泰来应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
12秒前
英姑应助小白采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Cardiovascular Disease Genetic Risk Prediction Models: A Systematic Review 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063970
求助须知:如何正确求助?哪些是违规求助? 3602387
关于积分的说明 11441255
捐赠科研通 3325526
什么是DOI,文献DOI怎么找? 1828154
邀请新用户注册赠送积分活动 898633
科研通“疑难数据库(出版商)”最低求助积分说明 819103