亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling

预言 健康状况 可靠性工程 软件部署 过程(计算) 计算机科学 可扩展性 电池(电) 可靠性(半导体) 估计 风险分析(工程) 重新调整用途 工程类 系统工程 功率(物理) 医学 物理 量子力学 数据库 废物管理 操作系统
作者
Huzaifa Rauf,Muhammad Khalid,Naveed Arshad
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:156: 111903-111903 被引量:150
标识
DOI:10.1016/j.rser.2021.111903
摘要

Designing and deployment of state-of-the-art electric vehicles (EVs) in terms of low cost and high driving range with appropriate reliability and security are identified as the key towards decarbonization of the transportation sector. Nevertheless, the utilization of lithium-ion batteries face a core difficulty associated with environmental degradation factors, capacity fade, aging-induced degradation, and end-of-life repurposing. These factors play a pivotal role in the field of EVs. In this regard, state-of-health (SOH) and remaining useful life (RUL) estimation outlines the efficacy of the batteries as well as facilitate in the development and testing of numerous EV optimizations with identification of parameters that will enhance and further improve their efficiency. Both indices give an accurate estimation of the battery performance, maintenance, prognostics, and health management. Accordingly, machine learning (ML) techniques provide a significant developmental scope as best parameters and approaches cannot be identified for these estimations. ML strategies comparatively provide a non-invasive approach with low computation and high accuracy considering the scalability and timescale issues of battery degradation. This paper objectively provides an inclusively extensive review on these topics based on the research conducted over the past decade. An in-depth introductory is provided for SOH and RUL estimation highlighting their process and significance. Furthermore, numerous ML techniques are thoroughly and independently investigated based on each category and sub-category implemented for SOH and RUL measurement. Finally, applications-oriented discussion that explicates the advantages in terms of accuracy and computation is presented that targets to provide an insight for further development in this field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叁拾肆完成签到 ,获得积分10
1秒前
LYL完成签到,获得积分10
3秒前
huba完成签到 ,获得积分20
4秒前
7秒前
32完成签到 ,获得积分10
9秒前
李健的小迷弟应助Dash采纳,获得10
11秒前
fheu完成签到,获得积分20
12秒前
勤劳的冰菱完成签到,获得积分10
18秒前
完美世界应助cindy采纳,获得10
21秒前
28秒前
32秒前
科研通AI5应助cindy采纳,获得10
42秒前
cdercder应助冷静新烟采纳,获得10
42秒前
Swear完成签到 ,获得积分10
43秒前
47秒前
47秒前
科研通AI5应助AAA咸鱼批发采纳,获得10
54秒前
Juan_He发布了新的文献求助30
1分钟前
慕青应助314gjj采纳,获得10
1分钟前
YiWei完成签到 ,获得积分10
1分钟前
赵小红完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cindy发布了新的文献求助10
1分钟前
CodeCraft应助zzy采纳,获得10
1分钟前
材料摆渡人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
sdniuidifod发布了新的文献求助10
1分钟前
1206425219密完成签到,获得积分10
1分钟前
cindy发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助冰冰采纳,获得10
1分钟前
小二郎应助sdniuidifod采纳,获得10
1分钟前
1分钟前
firesquall发布了新的文献求助10
1分钟前
1分钟前
AAA咸鱼批发完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346402
关于积分的说明 10329217
捐赠科研通 3062864
什么是DOI,文献DOI怎么找? 1681220
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702