Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling

预言 健康状况 可靠性工程 软件部署 过程(计算) 计算机科学 可扩展性 电池(电) 可靠性(半导体) 估计 风险分析(工程) 重新调整用途 工程类 系统工程 功率(物理) 医学 物理 量子力学 数据库 废物管理 操作系统
作者
Huzaifa Rauf,Muhammad Khalid,Naveed Arshad
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:156: 111903-111903 被引量:185
标识
DOI:10.1016/j.rser.2021.111903
摘要

Designing and deployment of state-of-the-art electric vehicles (EVs) in terms of low cost and high driving range with appropriate reliability and security are identified as the key towards decarbonization of the transportation sector. Nevertheless, the utilization of lithium-ion batteries face a core difficulty associated with environmental degradation factors, capacity fade, aging-induced degradation, and end-of-life repurposing. These factors play a pivotal role in the field of EVs. In this regard, state-of-health (SOH) and remaining useful life (RUL) estimation outlines the efficacy of the batteries as well as facilitate in the development and testing of numerous EV optimizations with identification of parameters that will enhance and further improve their efficiency. Both indices give an accurate estimation of the battery performance, maintenance, prognostics, and health management. Accordingly, machine learning (ML) techniques provide a significant developmental scope as best parameters and approaches cannot be identified for these estimations. ML strategies comparatively provide a non-invasive approach with low computation and high accuracy considering the scalability and timescale issues of battery degradation. This paper objectively provides an inclusively extensive review on these topics based on the research conducted over the past decade. An in-depth introductory is provided for SOH and RUL estimation highlighting their process and significance. Furthermore, numerous ML techniques are thoroughly and independently investigated based on each category and sub-category implemented for SOH and RUL measurement. Finally, applications-oriented discussion that explicates the advantages in terms of accuracy and computation is presented that targets to provide an insight for further development in this field of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美岂愈发布了新的文献求助10
刚刚
1秒前
2秒前
Jasper应助jsjjs采纳,获得10
3秒前
多肉丸子发布了新的文献求助10
3秒前
叮咚发布了新的文献求助30
3秒前
4秒前
zss完成签到,获得积分10
5秒前
CodeCraft应助轻松的惜芹采纳,获得20
6秒前
爆米花应助椰ye采纳,获得10
6秒前
仙笛童神发布了新的文献求助10
6秒前
7秒前
7秒前
HJM发布了新的文献求助10
9秒前
哈哈怪完成签到,获得积分10
10秒前
孙燕应助完美岂愈采纳,获得50
11秒前
11秒前
FFFFFF发布了新的文献求助10
11秒前
山谷与花完成签到,获得积分20
11秒前
火星上牛青完成签到,获得积分10
12秒前
erhao完成签到 ,获得积分10
12秒前
坎坎坷坷关注了科研通微信公众号
12秒前
灯与鬼发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
Alex完成签到,获得积分10
15秒前
16秒前
catherine完成签到,获得积分10
16秒前
17秒前
19秒前
不安青牛应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
MY999发布了新的文献求助10
19秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065713
求助须知:如何正确求助?哪些是违规求助? 3604364
关于积分的说明 11447194
捐赠科研通 3326838
什么是DOI,文献DOI怎么找? 1828872
邀请新用户注册赠送积分活动 899036
科研通“疑难数据库(出版商)”最低求助积分说明 819410