Trans-omics analyses revealed key epigenetic genes associated with overall survival in secondary progressive multiple sclerosis

表观遗传学 基因 DNA甲基化 疾病 甲基化 生物 生物信息学 计算生物学 基因表达 遗传学 医学 内科学
作者
Fei Ye,Yuanyuan Dai,Tianzhu Wang,Jie Liang,Xiaoxin Wu,Kai Lan,Wenli Sheng
出处
期刊:Journal of Neuroimmunology [Elsevier BV]
卷期号:364: 577809-577809
标识
DOI:10.1016/j.jneuroim.2022.577809
摘要

Secondary progressive multiple sclerosis (SPMS) is the second most common presentation of multiple sclerosis (MS) and is characterized by a gradually deteriorating disease with or without relapses. Approximately 80% of patients with relapsing-remitting MS (RRMS) develop SPMS within 20 years. Epidemiological investigations have revealed an average 7-year life expectancy decrease (more severe in progressive subtypes) in patients with MS. Studies have focused on the neurodegenerative pathogenesis of SPMS; and epigenetic changes have been associated with disease progression in neurodegenerative disorders. However, the evidence for the association between epigenetic changes and SPMS is scarce. Thus, in this study we aimed to identify the key epigenetic genes in SPMS.We downloaded DNA methylation and gene expression matrices from the Gene Expression Omnibus (GEO) database. We used bioinformatic analyses to identify key epigenetic genes associated with overall survival (OS) in patients with SPMS.We found 49 differentially methylated positions (DMPs) between the SPMS and control GSE40360 datasets. We used the wANNOVAR server to obtain 64 methylated genes. We merged the gene expression datasets (GSE131282 and GSE135511) in the NetworkAnalyst platform and found 12,442 differentially-expressed genes (DEGs) between SPMS and controls using the Fisher's method, fixed effect model, Vote counting, and direct merging methods. Moreover, we identified 21 epigenetic genes (all hyper-methylated) after an integrating analysis of DMPs and DEGs of patients with SPMS. We established an epigenetic gene signature associated with the OS of patients with SPMS including six hyper-methylated genes (ITGA6, PPP1R16B, RNF126, ABHD8, FOXK1, and SLC6A19) based on the LASSO-Cox method. The calculated individual risk scores were associated with Oss, and we divided patients into high- and low-risk groups on the basis of the mean cut-off value. The six key epigenetic genes were significantly associated with gender, disease duration, and age at death via Spearman correlation analyses. In addition, survival analyses revealed a significant OS difference between high- and low-risk groups. The ROC curves indicated good performance for this predictive model.We identified 21 hyper-methylated genes in patients with SPMS via an integrated analysis of DNA methylation and gene expression datasets. We identified a six-epigenetic gene signature that predicts the individual OS with good accuracy. These results indicated that epigenetic modifications play a vital role in the disease progression of SPMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
rain123发布了新的文献求助10
2秒前
zho发布了新的文献求助10
3秒前
Joshua发布了新的文献求助30
5秒前
无花果应助三岁居居采纳,获得10
6秒前
杰Sir完成签到,获得积分10
6秒前
Lucy完成签到 ,获得积分10
7秒前
杰king留下了新的社区评论
8秒前
江洋大盗发布了新的文献求助30
8秒前
houyunfeng完成签到,获得积分10
9秒前
星空下的皮先生完成签到,获得积分10
10秒前
郑冰冰关注了科研通微信公众号
11秒前
搜集达人应助七星采纳,获得30
11秒前
orixero应助nenoaowu采纳,获得10
12秒前
orixero应助优美的小笼包采纳,获得10
12秒前
cyj完成签到,获得积分10
13秒前
15秒前
SYLH应助Fiona采纳,获得10
15秒前
肥波完成签到,获得积分10
16秒前
17秒前
科研通AI2S应助杨杨采纳,获得10
17秒前
阿斯顿完成签到,获得积分10
18秒前
Colin完成签到,获得积分10
18秒前
20秒前
nine2652发布了新的文献求助10
21秒前
君兮完成签到,获得积分10
23秒前
糊涂的皮卡丘完成签到 ,获得积分10
24秒前
搜集达人应助liaofr采纳,获得10
25秒前
25秒前
28秒前
科研通AI5应助lizhiqian2024采纳,获得30
29秒前
ponytail发布了新的文献求助10
30秒前
30秒前
Crystal完成签到,获得积分10
32秒前
这斯和休关注了科研通微信公众号
32秒前
34秒前
屿界完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391