Prebiotic effects: metabolic and health benefits

益生元 失调 肠道菌群 生物 生物技术 食品科学 免疫学
作者
Marcel Roberfroid,Glenn R. Gibson,Lesley Hoyles,Anne L. McCartney,Robert A. Rastall,Ian Rowland,Danielle Wolvers,Bernhard Watzl,Hania Szajewska,Bernd Stahl,Francisco Guarner,F. Respondek,Kevin Whelan,Véronique Coxam,Marie-Jeanne Davicco,Laurent Léotoing,Yohann Wittrant,Nathalie M. Delzenne,Patrice D. Cani,Audrey M. Neyrinck
出处
期刊:British Journal of Nutrition [Cambridge University Press]
卷期号:104 (S2): S1-S63 被引量:2020
标识
DOI:10.1017/s0007114510003363
摘要

The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, ‘normobiosis’ characterises a composition of the gut ‘ecosystem’ in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to ‘dysbiosis’, in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in ‘prebiotic effects’), defined as: ‘The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.’ Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
nowiziki发布了新的文献求助40
刚刚
田様应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
zhuao应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
zhuao应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
深情安青应助溪水哗哗采纳,获得10
2秒前
2秒前
研友_5Z4ZA5发布了新的文献求助10
3秒前
4秒前
上官若男应助成就发夹采纳,获得10
5秒前
GLY发布了新的文献求助10
7秒前
hh发布了新的文献求助10
7秒前
杨老师216发布了新的文献求助10
7秒前
woshiyy完成签到 ,获得积分10
9秒前
11秒前
念一发布了新的文献求助10
12秒前
asheng完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745737
求助须知:如何正确求助?哪些是违规求助? 5428474
关于积分的说明 15353979
捐赠科研通 4885673
什么是DOI,文献DOI怎么找? 2626875
邀请新用户注册赠送积分活动 1575393
关于科研通互助平台的介绍 1532134