亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Video-Based Automated Recommender (VAR) System for Garments

计算机科学 推荐系统 采购 集合(抽象数据类型) 服装 可扩展性 产品(数学) 实证研究 联合分析 情报检索 数据库 营销 偏爱 业务 微观经济学 考古 历史 程序设计语言 经济 数学 哲学 几何学 认识论
作者
Shasha Lu,Xiao Li,Min Ding
出处
期刊:Marketing Science [Institute for Operations Research and the Management Sciences]
卷期号:35 (3): 484-510 被引量:79
标识
DOI:10.1287/mksc.2016.0984
摘要

In this paper, we propose an automated and scalable garment recommender system using real-time in-store videos that can improve the experiences of garment shoppers and increase product sales. The video-based automated recommender (VAR) system is based on observations that garment shoppers tend to try on garments and evaluate themselves in front of store mirrors. Combining state-of-the-art computer vision techniques with marketing models of consumer preferences, the system automatically identifies shoppers’ preferences based on their reactions and uses that information to make meaningful personalized recommendations. First, the system uses a camera to capture a shopper’s behavior in front of the mirror to make inferences about her preferences based on her facial expressions and the part of the garment she is examining at each time point. Second, the system identifies shoppers with preferences similar to the focal customer from a database of shoppers whose preferences, purchasing, and/or consideration decisions are known. Finally, recommendations are made to the focal customer based on the preferences, purchasing, and/or consideration decisions of these like-minded shoppers. Each of the three steps can be implemented with several variations, and a retailing chain can choose the specific configuration that best serves its purpose. In this paper, we present an empirical test that compares one specific type of VAR system implementation against two alternative, nonautomated personal recommender systems: self-explicated conjoint (SEC) and self-evaluation after try-on (SET). The results show that VAR consistently outperforms SEC and SET. A second empirical study demonstrates the feasibility of VAR in real-time applications. Participants in the second study enjoyed the VAR experience, and almost all of them tried on the recommended garments. VAR should prove to be a valuable tool for both garment retailers and shoppers. Data, as supplemental material, are available at http://dx.doi.org/10.1287/mksc.2016.0984 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
科研通AI2S应助daizao采纳,获得30
38秒前
G.D完成签到 ,获得积分10
41秒前
Juse332发布了新的文献求助10
45秒前
东溟渔夫发布了新的文献求助10
52秒前
斯文的访烟完成签到,获得积分10
59秒前
自由的雅旋完成签到 ,获得积分10
1分钟前
啾啾尼泊尔完成签到,获得积分10
1分钟前
gszy1975完成签到,获得积分10
2分钟前
烟花应助哈哈哈哈嗝屁采纳,获得30
2分钟前
香蕉觅云应助清泉采纳,获得10
2分钟前
2分钟前
2分钟前
xzy998发布了新的文献求助50
2分钟前
YifanWang完成签到,获得积分0
2分钟前
李志全完成签到 ,获得积分10
2分钟前
Ava应助东溟渔夫采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
小白发布了新的文献求助10
2分钟前
牛牛月饼发布了新的文献求助30
3分钟前
3分钟前
东溟渔夫发布了新的文献求助10
3分钟前
牛牛月饼完成签到,获得积分10
4分钟前
Akim应助东溟渔夫采纳,获得10
4分钟前
BBQ关闭了BBQ文献求助
4分钟前
4分钟前
5分钟前
v哈哈发布了新的文献求助10
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
Ming发布了新的文献求助10
5分钟前
SciGPT应助Ming采纳,获得10
5分钟前
瘦瘦的师发布了新的文献求助10
6分钟前
大模型应助zhengzhster采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
自律发布了新的文献求助10
6分钟前
自律完成签到,获得积分10
6分钟前
BBQ发布了新的文献求助10
7分钟前
Ezekiel给Ezekiel的求助进行了留言
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433