Is Extreme Learning Machine Feasible? A Theoretical Assessment (Part I)

极限学习机 一般化 乙状窦函数 Tikhonov正则化 激活函数 计算机科学 人工神经网络 正规化(语言学) 前馈神经网络 数学 人工智能 应用数学 反问题 数学分析
作者
Xia Liu,Shao-Bo Lin,Jian Fang,Zongben Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 7-20 被引量:196
标识
DOI:10.1109/tnnls.2014.2335212
摘要

An extreme learning machine (ELM) is a feedforward neural network (FNN) like learning system whose connections with output neurons are adjustable, while the connections with and within hidden neurons are randomly fixed. Numerous applications have demonstrated the feasibility and high efficiency of ELM-like systems. It has, however, been open if this is true for any general applications. In this two-part paper, we conduct a comprehensive feasibility analysis of ELM. In Part I, we provide an answer to the question by theoretically justifying the following: 1) for some suitable activation functions, such as polynomials, Nadaraya-Watson and sigmoid functions, the ELM-like systems can attain the theoretical generalization bound of the FNNs with all connections adjusted, i.e., they do not degrade the generalization capability of the FNNs even when the connections with and within hidden neurons are randomly fixed; 2) the number of hidden neurons needed for an ELM-like system to achieve the theoretical bound can be estimated; and 3) whenever the activation function is taken as polynomial, the deduced hidden layer output matrix is of full column-rank, therefore the generalized inverse technique can be efficiently applied to yield the solution of an ELM-like system, and, furthermore, for the nonpolynomial case, the Tikhonov regularization can be applied to guarantee the weak regularity while not sacrificing the generalization capability. In Part II, however, we reveal a different aspect of the feasibility of ELM: there also exists some activation functions, which makes the corresponding ELM degrade the generalization capability. The obtained results underlie the feasibility and efficiency of ELM-like systems, and yield various generalizations and improvements of the systems as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟雨完成签到,获得积分10
刚刚
刚刚
cong完成签到 ,获得积分10
1秒前
2秒前
赵亚南完成签到,获得积分10
2秒前
肯德鸭完成签到,获得积分10
3秒前
现实的煎蛋完成签到,获得积分10
7秒前
大力水手完成签到,获得积分10
7秒前
湖里发布了新的文献求助10
9秒前
文二目分完成签到 ,获得积分10
10秒前
不器君完成签到 ,获得积分10
10秒前
11秒前
Jayzie完成签到 ,获得积分10
12秒前
浮熙完成签到 ,获得积分10
12秒前
星辰大海应助湖里采纳,获得10
14秒前
longmad完成签到,获得积分10
15秒前
CDI和LIB完成签到,获得积分10
17秒前
听寒完成签到,获得积分10
18秒前
hjygzv完成签到,获得积分10
21秒前
朝暮完成签到 ,获得积分10
25秒前
每天都很忙完成签到 ,获得积分10
26秒前
28秒前
h41692011完成签到 ,获得积分10
28秒前
踏实的无敌完成签到,获得积分10
31秒前
32秒前
大分子发布了新的文献求助10
33秒前
小刘爱读文献完成签到 ,获得积分10
36秒前
巴拉巴拉发布了新的文献求助10
36秒前
wwj1009完成签到 ,获得积分10
36秒前
WXR完成签到,获得积分10
37秒前
37秒前
LALALADDDD完成签到,获得积分0
39秒前
43秒前
SYLH应助Singularity采纳,获得10
44秒前
able完成签到 ,获得积分10
47秒前
51秒前
Ryan完成签到 ,获得积分10
51秒前
天天快乐应助巴拉巴拉采纳,获得10
52秒前
简单发布了新的文献求助10
57秒前
Joker完成签到,获得积分10
59秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402490
捐赠科研通 3077249
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743