已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

计算机科学 人工智能 特征(语言学) 编码器 增采样 卷积神经网络 联营 像素 水准点(测量) 分割 模式识别(心理学) 网络体系结构 图像分割 深度学习 计算机视觉 图像(数学) 哲学 操作系统 语言学 计算机安全 地理 大地测量学
作者
Vijay Badrinarayanan,A. C. Kendall,Roberto Cipolla
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:39 (12): 2481-2495 被引量:16211
标识
DOI:10.1109/tpami.2016.2644615
摘要

We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1] . The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3] , DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
想吃糖葫芦完成签到 ,获得积分10
刚刚
Frank完成签到,获得积分10
1秒前
5秒前
打打应助liu采纳,获得10
5秒前
tangz发布了新的文献求助10
7秒前
SPLjoker完成签到 ,获得积分10
7秒前
平淡夜绿完成签到,获得积分20
9秒前
llk完成签到 ,获得积分10
10秒前
赵创完成签到,获得积分10
10秒前
adkdad完成签到,获得积分10
11秒前
爱笑的断缘关注了科研通微信公众号
11秒前
方俊驰完成签到,获得积分10
12秒前
常语堂完成签到 ,获得积分10
13秒前
一只熊完成签到 ,获得积分10
13秒前
hx完成签到 ,获得积分10
16秒前
欧皇完成签到,获得积分20
16秒前
JL完成签到,获得积分10
17秒前
daydayup完成签到,获得积分10
18秒前
酷酷问夏完成签到 ,获得积分10
20秒前
田様应助财源滚滚采纳,获得10
22秒前
003完成签到,获得积分10
22秒前
28秒前
韦老虎发布了新的文献求助100
30秒前
搞怪的音响完成签到 ,获得积分10
31秒前
酷波er应助星星采纳,获得10
31秒前
tangz完成签到,获得积分20
32秒前
善学以致用应助XP采纳,获得30
32秒前
Hqing完成签到 ,获得积分10
33秒前
cao完成签到 ,获得积分10
34秒前
土豪的灵竹完成签到 ,获得积分10
34秒前
hiaoyi完成签到 ,获得积分0
35秒前
37秒前
mangle完成签到,获得积分10
38秒前
40秒前
gumiho1007完成签到,获得积分10
40秒前
002完成签到,获得积分10
42秒前
和谐蛋蛋完成签到,获得积分10
42秒前
王晓静完成签到 ,获得积分10
43秒前
XP发布了新的文献求助30
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788137
求助须知:如何正确求助?哪些是违规求助? 3333604
关于积分的说明 10262663
捐赠科研通 3049441
什么是DOI,文献DOI怎么找? 1673545
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477