SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

计算机科学 人工智能 特征(语言学) 编码器 增采样 卷积神经网络 联营 像素 水准点(测量) 分割 模式识别(心理学) 网络体系结构 图像分割 深度学习 计算机视觉 图像(数学) 哲学 操作系统 语言学 计算机安全 地理 大地测量学
作者
Vijay Badrinarayanan,A. C. Kendall,Roberto Cipolla
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:39 (12): 2481-2495 被引量:16211
标识
DOI:10.1109/tpami.2016.2644615
摘要

We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1] . The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3] , DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤翠容发布了新的文献求助10
刚刚
刚刚
巫马凌旋完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
5秒前
JamesPei应助Lv采纳,获得10
6秒前
RX发布了新的文献求助10
6秒前
7秒前
心灵美的亦玉完成签到,获得积分10
8秒前
8秒前
直率的菠萝完成签到 ,获得积分10
8秒前
8秒前
田様应助咖喱鸡采纳,获得10
8秒前
王大锤2015完成签到,获得积分10
9秒前
MY999发布了新的文献求助10
10秒前
KK发布了新的文献求助10
11秒前
喜悦傲之完成签到,获得积分10
12秒前
111发布了新的文献求助10
12秒前
人间忽晚发布了新的文献求助10
13秒前
小徐徐爱学习完成签到,获得积分10
13秒前
受伤翠容完成签到,获得积分10
14秒前
15秒前
晨曦应助luvletter采纳,获得10
15秒前
悲凉的翼完成签到 ,获得积分10
17秒前
18秒前
18秒前
yi发布了新的文献求助10
19秒前
橘子完成签到,获得积分10
19秒前
CodeCraft应助cc采纳,获得10
20秒前
20秒前
CR7应助科研小萝卜采纳,获得20
20秒前
21秒前
光仔发布了新的文献求助10
24秒前
24秒前
Lifetour发布了新的文献求助10
24秒前
RX完成签到,获得积分10
24秒前
你怎么那么美完成签到 ,获得积分10
25秒前
ROY完成签到,获得积分10
25秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065678
求助须知:如何正确求助?哪些是违规求助? 3604318
关于积分的说明 11447079
捐赠科研通 3326797
什么是DOI,文献DOI怎么找? 1828872
邀请新用户注册赠送积分活动 899026
科研通“疑难数据库(出版商)”最低求助积分说明 819410