Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

机器翻译 计算机科学 自然语言处理 人工智能 判决 语言模型 翻译(生物学) 编码器 基于实例的机器翻译 德国的 安全性令牌 语言学 生物化学 化学 哲学 计算机安全 信使核糖核酸 基因 操作系统
作者
Melvin Johnson,Mike Schuster,Quoc V. Le,Maxim Krikun,Yonghui Wu,Zhifeng Chen,Nikhil Thorat,Fernanda Viégas,Martin Wattenberg,Greg S. Corrado,Macduff Hughes,Jay B. Dean
出处
期刊:Cornell University - arXiv 被引量:76
摘要

We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for English$\rightarrow$French and surpasses state-of-the-art results for English$\rightarrow$German. Similarly, a single multilingual model surpasses state-of-the-art results for French$\rightarrow$English and German$\rightarrow$English on WMT'14 and WMT'15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
草莓大恐龙完成签到,获得积分10
5秒前
zhang完成签到,获得积分10
5秒前
明哥完成签到,获得积分10
7秒前
7秒前
科目三应助如初采纳,获得10
8秒前
落后凝莲发布了新的文献求助10
8秒前
11秒前
UpUp完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
疯狂的芳完成签到,获得积分10
15秒前
16秒前
周舟发布了新的文献求助10
17秒前
figure完成签到 ,获得积分10
17秒前
爱尚完成签到,获得积分10
17秒前
18秒前
shijie发布了新的文献求助10
18秒前
科研通AI2S应助olekravchenko采纳,获得10
20秒前
刘涵完成签到 ,获得积分10
20秒前
20秒前
20秒前
天天快乐应助阳阳阳阳阳采纳,获得10
21秒前
糕冷草莓完成签到,获得积分10
22秒前
丘比特应助淡定草丛采纳,获得30
22秒前
Ava应助动人的成威采纳,获得10
23秒前
星辰大海应助yuan采纳,获得10
25秒前
Jasper应助科研小菜鸟i采纳,获得10
25秒前
25秒前
酷酷水壶发布了新的文献求助10
26秒前
脑洞疼应助明理的茹妖采纳,获得10
27秒前
乐乐应助悲凉的皮卡丘采纳,获得30
27秒前
pterion发布了新的文献求助10
27秒前
为治发布了新的文献求助10
30秒前
鲤鱼羿完成签到,获得积分10
33秒前
33秒前
37秒前
量子星尘发布了新的文献求助10
37秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886708
求助须知:如何正确求助?哪些是违规求助? 3428935
关于积分的说明 10763096
捐赠科研通 3153990
什么是DOI,文献DOI怎么找? 1741331
邀请新用户注册赠送积分活动 840610
科研通“疑难数据库(出版商)”最低求助积分说明 785452