On using machine learning algorithms to define clinically meaningful patient subgroups

医学 聚类分析 星团(航天器) 层次聚类 同种类的 人工智能 机器学习 计算机科学 数学 组合数学 程序设计语言
作者
Rachel Knevel,T. Huizinga
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:79 (12): e154-e154 被引量:5
标识
DOI:10.1136/annrheumdis-2019-215959
摘要

Improved taxonomy will drive our efforts to personalise medicine over time. Ideally improved taxonomy is fueled by our detailed insight in pathogenesis leading to subgrouping syndrome’s into more homogeneous diseases. An alternative is to cluster subgroups of patients based on similar manifestations and prognosis. So, the recent publication of Spielman et al 1 as well as the correspondence on that study written by Pinal-Fernandez and Mammen2 is very timely and interesting. Spielman et al 1 identified three clinical clusters in patient with anti-Ku-positive myositis by applying hierarchical clustering analysis on both clinical and biological features. Pinal-Fernandez and Mammen suggest that the results of Spielman’s work might be flawed as they disagree with the method of number of cluster selection. Indirectly they also challenge the idea of using (hierarchical) clustering techniques to identify clinically meaningful patient populations. Of course, we agree that improper use of analytical methods can lead to incorrect conclusions. Therefore, we applaud the ongoing discussion on how to reliably use ‘big-data techniques’ partly fueled by EULAR’s point to consider for the use of …

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cy完成签到,获得积分10
刚刚
superlun完成签到,获得积分10
刚刚
炸鸡加热发布了新的文献求助10
刚刚
QQ完成签到 ,获得积分10
刚刚
个性尔槐发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
逗逗完成签到,获得积分10
1秒前
自觉的涵山完成签到 ,获得积分10
2秒前
2秒前
田様应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
charint应助科研通管家采纳,获得10
3秒前
kk发布了新的文献求助10
3秒前
在水一方应助云轰2857采纳,获得10
3秒前
逗逗发布了新的文献求助10
3秒前
路哈哈完成签到,获得积分10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
小青椒应助科研通管家采纳,获得60
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
大模型应助Shrine采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
一壶古酒应助科研通管家采纳,获得50
3秒前
浮游应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
陈末应助科研通管家采纳,获得20
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
dreamdraver完成签到,获得积分10
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
幽一完成签到,获得积分10
4秒前
健行美好发布了新的文献求助50
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471088
求助须知:如何正确求助?哪些是违规求助? 4573837
关于积分的说明 14341652
捐赠科研通 4501048
什么是DOI,文献DOI怎么找? 2466129
邀请新用户注册赠送积分活动 1454359
关于科研通互助平台的介绍 1428966