生物
旁分泌信号
干细胞
精子发生
男科
微泡
再生(生物学)
间充质干细胞
内科学
移植
内分泌学
细胞生物学
医学
基因
小RNA
受体
生物化学
作者
Cuncan Deng,Yun Xie,Chi Zhang,Bin Ouyang,Haicheng Chen,Linyan Lv,Jiahui Yao,Xiaoyan Liang,Yuanyuan Zhang,Xiang-Zhou Sun,Chunhua Deng,Guihua Liu
出处
期刊:Stem Cells and Development
[Mary Ann Liebert, Inc.]
日期:2019-07-17
卷期号:28 (19): 1322-1333
被引量:39
标识
DOI:10.1089/scd.2019.0026
摘要
Nonobstructive azoospermia (NOA) is a severe form of male infertility, with limited effective treatments. Urine-derived stem cells (USCs) possess multipotent differentiation capacity and paracrine effects, and participate in tissue repair and regeneration. The aim of this study is to investigate whether the transplantation of USCs or USC exosomes (USC-exos) could promote endogenous spermatogenesis restoration in a busulfan-induced NOA mice model. USCs were cultured and characterized by flow cytometry. High-density USCs were cultured in a hollow fiber bioreactor for exosomes collection. USC-exos were isolated from USCs conditional media and identified by transmission electron microscopy, western blotting, and Flow NanoAnalyzer analysis. USC-exos exhibited sphere- or cup-shaped morphology with a mean diameter of 66.5 ± 16.0 nm, and expressed CD63 and CD9. USCs and USC-exos were transplanted into the interstitial space in the testes of NOA mice per the following groups: normal group; groups treated with no injection, phosphate-buffered saline (PBS), USCs or USC-exos on days 3 and 36 after busulfan administration, respectively. Thirty days after USCs and USC-exos transplantation, spermatogenesis was restored by both USCs and USC-exos in NOA mice 36 days after busulfan treatment as confirmed by immunofluorescence staining and hematoxylin and eosin staining. Moreover, spermatogenic genes (Pou5f1, Prm1, SYCP3, and DAZL) and the spermatogenic protein UCHL1 were significantly increased in both the USCs 36 and USC-exos36 groups compared with the PBS group, as demonstrated using quantitative real-time polymerase chain reaction and western blot analysis. However, the transplantation of USCs or USC-exos at day 3 after busulfan treatment did not improve spermatogenesis in NOA mice. Our study demonstrated that USCs could facilitate endogenous spermatogenesis restoration of busulfan-induced NOA mice through paracrine exosomes but could not protect the mouse testicles at the early stage of destruction caused by busulfan. This study provides a novel insight into the treatment of NOA.
科研通智能强力驱动
Strongly Powered by AbleSci AI