材料科学
氧化物
阴极
离子
扫描透射电子显微镜
金属
过渡金属
透射电子显微镜
吸收光谱法
化学物理
分析化学(期刊)
锂(药物)
纳米技术
冶金
物理化学
光学
内分泌学
物理
医学
催化作用
有机化学
化学
生物化学
色谱法
作者
Shuai Liu,Zepeng Liu,Xi Shen,Xuelong Wang,Sheng‐Chieh Liao,Richeng Yu,Zhaoxiang Wang,Zhiwei Hu,Chien‐Te Chen,Xiqian Yu,Xiao‐Qing Yang,Liquan Chen
标识
DOI:10.1002/aenm.201901530
摘要
Abstract Li‐rich layered metal oxides are one type of the most promising cathode materials in lithium‐ion batteries but suffer from severe voltage decay during cycling because of the continuous transition metal (TM) migration into the Li layers. A Li‐rich layered metal oxide Li 1.2 Ti 0.26 Ni 0.18 Co 0.18 Mn 0.18 O 2 (LTR) is hereby designed, in which some of the Ti 4+ cations are intrinsically present in the Li layers. The native Li–Ti cation mixing structure enhances the tolerance for structural distortion and inhibits the migration of the TM ions in the TMO 2 slabs during (de)lithiation. Consequently, LTR exhibits a remarkable cycling stability of 97% capacity retention after 182 cycles, and the average discharge potential drops only 90 mV in 100 cycles. In‐depth studies by electron energy loss spectroscopy and aberration‐corrected scanning transmission electron microscopy demonstrate the Li–Ti mixing structure. The charge compensation mechanism is uncovered with X‐ray absorption spectroscopy and explained with the density function theory calculations. These results show the superiority of introducing transition metal ions into the Li layers in reinforcing the structural stability of the Li‐rich layered metal oxides. These findings shed light on a possible path to the development of Li‐rich materials with better potential retention and a longer lifespan.
科研通智能强力驱动
Strongly Powered by AbleSci AI