多光谱图像
计算机科学
光学
生物医学中的光声成像
漫反射光学成像
人工智能
背景(考古学)
人工神经网络
反问题
残余物
迭代重建
计算机视觉
材料科学
算法
地质学
物理
数学
数学分析
古生物学
作者
Chuangjian Cai,Kexin Deng,Cheng Ma,Jianwen Luo
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2018-06-01
卷期号:43 (12): 2752-2752
被引量:123
摘要
An end-to-end deep neural network, ResU-net, is developed for quantitative photoacoustic imaging. A residual learning framework is used to facilitate optimization and to gain better accuracy from considerably increased network depth. The contracting and expanding paths enable ResU-net to extract comprehensive context information from multispectral initial pressure images and, subsequently, to infer a quantitative image of chromophore concentration or oxygen saturation (sO2). According to our numerical experiments, the estimations of sO2 and indocyanine green concentration are accurate and robust against variations in both optical property and object geometry. An extremely short reconstruction time of 22 ms is achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI