微载波
间充质干细胞
生物过程
生物反应器
干细胞
生物医学工程
胎牛血清
细胞培养
细胞生物学
细胞
悬浮培养
化学
免疫学
生物
医学
生物化学
古生物学
有机化学
遗传学
作者
Yifan Yuan,Michael S. Kallos,Christopher Hunter,Arindom Sen
摘要
Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have potential clinical utility in the treatment of a multitude of ailments and diseases, due to their relative ease of isolation from patients and their capacity to form many cell types. However, hBM-MSCs are sparse, and can only be isolated in very small quantities, thereby hindering the development of clinical therapies. The use of microcarrier-based stirred suspension bioreactors to expand stem cell populations offers an approach to overcome this problem. Starting with standard culture protocols commonly reported in the literature, we have successfully developed new protocols that allow for improved expansion of hBM-MSCs in stirred suspension bioreactors using CultiSpher-S microcarriers. Cell attachment was facilitated by using intermittent bioreactor agitation, removing fetal bovine serum, modifying the stirring speed and manipulating the medium pH. By manipulating these parameters, we enhanced the cell attachment efficiency in the first 8 h post-inoculation from 18% (standard protocol) to 72% (improved protocol). Following microcarrier attachment, agitation rate was found to impact cell growth kinetics, whereas feeding had no significant effect. By serially subculturing hBM-MSCs using the new suspension bioreactor protocols, we managed to obtain cell fold increases of 103 within 30 days, which was superior to the 200-fold increase obtained using the standard protocol. The cells were found to retain their defining characteristics after several passages in suspension. This new bioprocess represents a more efficient approach for generating large numbers of hBM-MSCs in culture, which in turn should facilitate the development of new stem cell-based therapies. Copyright © 2012 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI