亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

H 2 -Ambient Air PGM-Free Anion-Exchange Membrane Fuel Cells – the Beginning of a New Fuel Cell Era

燃料电池 催化作用 质子交换膜燃料电池 工艺工程 纳米技术 氢氧化物 化学 材料科学 生化工程 环境科学 化学工程 工程类 膜电极组件 领域(数学) 计算机科学
作者
Dario R. Dekel
出处
期刊:Meeting abstracts 卷期号:MA2025-02 (38): 1820-1820
标识
DOI:10.1149/ma2025-02381820mtgabs
摘要

Since the first Anion-Exchange Membrane (AEM) Fuel Cell (AEMFC) with practical performance was announced about a decade ago 1 , significant advances have been achieved in this field of research. In the past few years of intensive research on AEMFCs, remarkable progress has been reported, such as new highly stable functional groups for advanced AEMs 2-5 and highly active PGM-free catalysts 6-8 . At the cell level, new AEMFCs based on CRM-free catalysts were successfully demonstrated 9 , AEMFC’s lifetime of 5,000-15,000 hours was theoretically demonstrated for the first time 10-11 , and a cell lifetime of 2,000 hours was experimentally proven 12 . Altogether, the research community has made very impressive progress in such a short time. However, many challenges still need to be overcome to achieve AEMFCs of industrial interest. Among them, cell performance with completely PGM-free catalysts and operation with ambient air, are the most critical ones. We, at Technion, have recently presented the first results of AEMFCs tested at cell temperatures above 100 ℃ 13-17 . At these high temperatures, we could achieve not only high hydroxide ion conductivities close to 300 mS/cm 18 (!) but also improved cell stability (yes, a very counterintuitive result). We have also demonstrated a novel approach to achieve high AEMFC performance while using PGM-free catalysts in both electrodes. Altogether, these breakthroughs allow us for the first time to operate AEMFCs with ambient air and achieve record-high performance. This represents a significant landmark for this technology. In this talk, I will present the achievements and the new state-of-the-art H 2 -air AEMFC. References Dekel; Alkaline Membrane Fuel Cell (AMFC) Materials and System Improvement – State-of-the-Art; ECS Transactions , 50 (2) 2051-2052, 2013. Gjineci et al., Increasing the alkaline stability of N,N-diaryl-carbazolium salts using substituent electronic effects; ACS Appl. Mater. Interf. 12, 49617, 2020. Fan et al., Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability”; Nature Commun . 10(1), 2306, 2019. Gjineci et al., The reaction mechanism between tetraarylammonium salts and hydroxide; J. Org. Chem . 21, 3161-3168, 2020. Liu et al., Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membrane; Nature Energy 7, 329–339, 2022. Zion et al., Porphyrin aerogel catalysts for oxygen reduction reaction in anion-exchange membrane fuel cells; Functional Mater. 31(24), 2100963, 2021. Lilloja et al., Transition-metal and nitrogen-doped carbide-derived carbon/carbon nanotube composites; ACS Catalysis 11, 1920-1931, 2021. Kisand et al., Templated Nitrogen-, iron-, and cobalt-doped mesoporous nanocarbon derived from an alkylresorcinol mixture for AEMFC application; ACS Catalysis , 12, 14050-14061, Biemolt et al., An anion-exchange membrane fuel cell containing only abundant and affordable materials; Energy Technology 9, 2000909, 2021. Dekel et al., Predicting performance stability in anion exchange membrane fuel cells; Power Sources 420, 118-123, 2019. Yassin et al., Quantifying the critical effect of water diffusivity in anion exchange membranes for fuel cell applications; Membrane Sci. 608, 118206, 2020. Hassan et al., Achieving high-performance 2000h stability in AEMFCs; EnergyMater. 2001986, 2020. Douglin etal, A high-temperature anion-exchange membrane fuel cell; Power Sources Adv. 5, 100023, 2020. Douglin et al., A High-Temperature AEMFC with a Critical Raw Material-free Nitrogen-doped Carbon Cathode; Chemical Engineering J. Adv. 8, 100153, 2021. Yassin et al., A surprising relation between operating temperature and stability of AEMFCs; Power Sources Adv. 11, 100066, 2021. Liu et al., Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membrane; Nature Energy 7, 329–339, 2022. Xue et al., High-temperature AEMFCs with remarkable stability; Joule 8, 1457-1477, 2024. Zhegur-Khais et al., Measuring the true hydroxide conductivity of anion exchange membranes; Membrane Sci. 612, 118461, 2020.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljl86400完成签到,获得积分10
6秒前
9秒前
研友_8RyzBZ发布了新的文献求助10
15秒前
科研通AI6应助阳光的星月采纳,获得10
1分钟前
大个应助研友_8RyzBZ采纳,获得10
1分钟前
1分钟前
研友_8RyzBZ发布了新的文献求助10
2分钟前
123应助研友_8RyzBZ采纳,获得10
2分钟前
赘婿应助阳光的星月采纳,获得10
2分钟前
外向的妍完成签到,获得积分10
2分钟前
3分钟前
娟子完成签到,获得积分10
3分钟前
3分钟前
lsl应助Atopos采纳,获得30
4分钟前
Criminology34应助Atopos采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
嘟嘟完成签到 ,获得积分10
5分钟前
Aray完成签到 ,获得积分10
5分钟前
taster完成签到,获得积分10
6分钟前
6分钟前
光亮静槐完成签到 ,获得积分10
6分钟前
6分钟前
SilverPlane发布了新的文献求助10
6分钟前
SilverPlane完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
ding应助阳光的星月采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
烂漫的绿茶完成签到 ,获得积分10
8分钟前
DONG发布了新的文献求助10
8分钟前
寂寞的尔丝完成签到 ,获得积分10
8分钟前
小小绿发布了新的文献求助50
10分钟前
超级的千青完成签到 ,获得积分10
10分钟前
ding应助知闲采纳,获得10
10分钟前
10分钟前
满意机器猫完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635145
求助须知:如何正确求助?哪些是违规求助? 4734927
关于积分的说明 14989786
捐赠科研通 4792851
什么是DOI,文献DOI怎么找? 2559937
邀请新用户注册赠送积分活动 1520202
关于科研通互助平台的介绍 1480280