耗散系统
相变
凝聚态物理
相(物质)
非平衡态热力学
物理
微波食品加热
对称(几何)
灵敏度(控制系统)
对称性破坏
领域(数学)
Crystal(编程语言)
量子
材料科学
自发对称破缺
信号(编程语言)
量子相变
光电子学
相位噪声
量子传感器
消散
平移对称性
量子涨落
T对称
噪音(视频)
里德伯公式
分子物理学
作者
Yunlong Xue,Zhengyang Bai,Yu-qiang Ma
出处
期刊:Cornell University - arXiv
日期:2026-01-08
标识
DOI:10.48550/arxiv.2601.04943
摘要
A dissipative time crystal is an emergent phase in driven-dissipative quantum many-body systems, characterized by sustained oscillations that break time-translation symmetry spontaneously. Here, we explore nonequilibrium phase transitions in a dissipative Rydberg system driven by a microwave (MW) field and demonstrate their critical sensitivity to high-precision MW sensing. Distinct dynamical regimes are identified, including monostable, bistable, and oscillatory phases under mean-field coupling. Unlike single-particle detection--where the beating signal decays linearly with MW field strength--the time crystalline phase exhibits high sensitivity to MW perturbations, with rapid, discontinuous frequency switching near the monostable-oscillatory boundary. The abrupt transition is rooted in spontaneous symmetry breaking in time and is fundamentally insensitive to the background noise. On this basis, a minimum detectable MW field strength on the order of 1nV/cm is achieved by leveraging this sensitivity. Our results establish a framework for controlling time crystalline phases with external fields and advance MW sensing through many-body effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI