All-memristive neuromorphic computing with level-tuned neurons

神经形态工程学 记忆电阻器 冯·诺依曼建筑 计算机科学 计算机体系结构 人工神经网络 尖峰神经网络 过程(计算) 油藏计算 电阻随机存取存储器 电子线路 人工智能 CMOS芯片 生物神经网络 Spike(软件开发) 分布式计算 电子工程 循环神经网络 工程类 软件工程 操作系统
作者
Angeliki Pantazi,Stanisław Woźniak,Tomáš Tůma,Evangelos Eleftheriou
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:27 (35): 355205-355205 被引量:101
标识
DOI:10.1088/0957-4484/27/35/355205
摘要

In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郭政涛发布了新的文献求助10
1秒前
1秒前
小张发布了新的文献求助10
3秒前
肖遥发布了新的文献求助10
5秒前
5秒前
5秒前
菲菲宋发布了新的文献求助30
5秒前
6秒前
郭政涛完成签到,获得积分10
7秒前
香蕉觅云应助甜甜戎采纳,获得10
8秒前
李健应助wyq采纳,获得10
9秒前
桑落发布了新的文献求助10
9秒前
蛋挞发布了新的文献求助10
11秒前
英俊的铭应助缥缈的青旋采纳,获得200
11秒前
夕夕成玦完成签到,获得积分10
12秒前
12秒前
lin完成签到,获得积分10
13秒前
科研通AI5应助低空飞行采纳,获得10
13秒前
小杭76应助Taozhi采纳,获得10
14秒前
一期一会发布了新的文献求助10
15秒前
15秒前
17秒前
18秒前
奥黛丽赫本完成签到,获得积分10
19秒前
浮游应助勤奋旭尧采纳,获得10
19秒前
20秒前
乐乐应助fanmosi采纳,获得10
20秒前
21秒前
22秒前
Lachs发布了新的文献求助10
24秒前
shhyyds发布了新的文献求助10
24秒前
缥缈的青旋发布了新的文献求助200
24秒前
酷波er应助zinc采纳,获得10
24秒前
24秒前
25秒前
26秒前
tobealive完成签到,获得积分10
26秒前
yyzhou应助estrale采纳,获得20
26秒前
缓慢邴完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849337
求助须知:如何正确求助?哪些是违规求助? 4148789
关于积分的说明 12850985
捐赠科研通 3896088
什么是DOI,文献DOI怎么找? 2141441
邀请新用户注册赠送积分活动 1161055
关于科研通互助平台的介绍 1061137