All-memristive neuromorphic computing with level-tuned neurons

神经形态工程学 记忆电阻器 冯·诺依曼建筑 计算机科学 计算机体系结构 人工神经网络 尖峰神经网络 过程(计算) 油藏计算 电阻随机存取存储器 电子线路 人工智能 CMOS芯片 生物神经网络 Spike(软件开发) 分布式计算 电子工程 循环神经网络 工程类 软件工程 操作系统
作者
Angeliki Pantazi,Stanisław Woźniak,Tomáš Tůma,Evangelos Eleftheriou
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:27 (35): 355205-355205 被引量:101
标识
DOI:10.1088/0957-4484/27/35/355205
摘要

In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空白发布了新的文献求助10
2秒前
2秒前
完美世界应助花h采纳,获得10
7秒前
123发布了新的文献求助30
8秒前
11秒前
meimei发布了新的文献求助10
15秒前
落寞若你的完成签到 ,获得积分20
15秒前
深情安青应助AnnChen采纳,获得30
17秒前
布饭a完成签到 ,获得积分10
18秒前
19秒前
且放青山远完成签到,获得积分10
20秒前
22秒前
23秒前
花h发布了新的文献求助10
25秒前
123完成签到,获得积分10
26秒前
27秒前
越遇完成签到 ,获得积分10
27秒前
AnnChen发布了新的文献求助30
29秒前
彩色的断秋完成签到,获得积分10
30秒前
30秒前
矛尾复虾虎鱼完成签到,获得积分10
31秒前
茉莉花茶完成签到 ,获得积分10
33秒前
33秒前
AnnChen完成签到,获得积分10
34秒前
36秒前
我是老大应助打地鼠工人采纳,获得10
37秒前
39秒前
41秒前
Orange应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
Orange应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
Akim应助科研通管家采纳,获得10
41秒前
彭于晏应助科研通管家采纳,获得10
41秒前
赘婿应助科研通管家采纳,获得10
41秒前
香蕉觅云应助锌锌点灯采纳,获得10
41秒前
NexusExplorer应助科研通管家采纳,获得10
41秒前
41秒前
辛勤的花瓣完成签到 ,获得积分10
42秒前
caicai发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878