A High Power–High Energy Na3V2(PO4)2F3 Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization

电解质 材料科学 石墨烯 阴极 离子键合 纳米颗粒 锂(药物) 离子电导率 插层(化学) 电极 纳米技术 化学工程 离子 无机化学 化学 物理化学 内分泌学 工程类 医学 有机化学
作者
Changbao Zhu,Chao Wu,Chia‐Chin Chen,Peter Kopold,Peter A. van Aken,Joachim Maier,Yan Yu
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:29 (12): 5207-5215 被引量:160
标识
DOI:10.1021/acs.chemmater.7b00927
摘要

Sodium ion batteries are realistic and promising alternatives to lithium due to the abundance of Na and the similar intercalation chemistry of Na when compared to the lithium counterpart. Developing high-power and high-energy sodium batteries is still a significant challenge. Na3V2(PO4)2F3 (NVPF) has been shown to combine excellent charge–discharge kinetics with a competitively high voltage. However, the major issue is, as for the vast majority of electrode materials, the lack of distinct knowledge of fundamental transport parameters, on which an optimized strategy for developing a high-power and high-energy sodium cathode can be based. This work aims at filling this gap. We experimentally investigate the intrinsic ionic and electronic conductivities, as well as the chemical diffusion coefficient of sodium of Na3V2(PO4)2F3 by impedance and dc polarization. On the basis of these results, we develop an optimized design. As the electronic conductivity is found to be much smaller than the ionic one, electronic wiring of the particles (by a graphene network) has higher priority than providing electrolyte contact. This is important since the contact by graphene and electrolyte wetting is partly antagonistic, not so much because of interfacial tensions rather because of the introduced heterogeneities on the nanoscale (cf. Lotus effect). We develop and apply a one-step cost-effective low temperature hydrothermal method without any postheat treatment for the fabrication of a nanoparticulate (∼30–50 nm) NVPF electrode, which provides sufficient porosity and in which every nanoparticle is connected to the graphene network. In terms of rate capability, the performance of this electrode is excellent and at least belongs to the best Na storage performances reported for Na3V2(PO4)2F3 so far.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的嫣完成签到,获得积分20
1秒前
karulko完成签到,获得积分10
2秒前
动漫大师发布了新的文献求助20
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
5秒前
ZhouYW应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
爆米花应助小星星采纳,获得10
9秒前
9秒前
9秒前
10秒前
思源应助ZZY采纳,获得10
11秒前
11秒前
醋溜荧光大蒜完成签到 ,获得积分10
12秒前
xxxten完成签到,获得积分10
13秒前
林伟江发布了新的文献求助10
14秒前
酷波er应助旺仔采纳,获得10
14秒前
an上人完成签到,获得积分10
15秒前
wentao发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
虚拟的蛋挞完成签到,获得积分20
21秒前
21秒前
共享精神应助伯劳采纳,获得10
21秒前
Rainor发布了新的文献求助10
21秒前
22秒前
人生苦短完成签到,获得积分10
22秒前
开心的大开完成签到 ,获得积分10
22秒前
ZZY发布了新的文献求助10
23秒前
M1完成签到,获得积分10
24秒前
林伟江完成签到,获得积分10
24秒前
追寻书雁完成签到 ,获得积分10
24秒前
直率沂发布了新的文献求助10
25秒前
26秒前
橘子味汽水完成签到 ,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814371
求助须知:如何正确求助?哪些是违规求助? 3358476
关于积分的说明 10395223
捐赠科研通 3075736
什么是DOI,文献DOI怎么找? 1689502
邀请新用户注册赠送积分活动 812992
科研通“疑难数据库(出版商)”最低求助积分说明 767428