Adaptive multifocus image fusion using block compressed sensing with smoothed projected Landweber integration in the wavelet domain

图像融合 人工智能 小波 计算机科学 计算机视觉 压缩传感 小波变换 模式识别(心理学) 块(置换群论) 阈值 数学 图像(数学) 几何学
作者
V. S. Unni,Deepak Mishra,Rama Krishna Gorthi
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:33 (12): 2516-2516 被引量:4
标识
DOI:10.1364/josaa.33.002516
摘要

The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康米完成签到,获得积分10
刚刚
迷你的雁枫完成签到 ,获得积分10
刚刚
周先森完成签到,获得积分10
刚刚
呜呜完成签到,获得积分10
1秒前
小小完成签到,获得积分10
2秒前
2秒前
2秒前
刘雪晴完成签到 ,获得积分10
2秒前
长情琦完成签到,获得积分10
3秒前
seedcode完成签到,获得积分10
3秒前
长孙归尘完成签到 ,获得积分10
3秒前
xiaojiu完成签到,获得积分10
4秒前
xz发布了新的文献求助10
4秒前
wenhuanwenxian完成签到 ,获得积分10
4秒前
yincy发布了新的文献求助10
4秒前
hs完成签到,获得积分10
6秒前
6秒前
沉默听芹完成签到,获得积分10
6秒前
思源应助摸鱼大王采纳,获得10
7秒前
Joseph_sss完成签到 ,获得积分10
7秒前
Maerang发布了新的文献求助10
7秒前
xjy1521完成签到,获得积分10
8秒前
CipherSage应助愉快的千风采纳,获得10
10秒前
Kiki完成签到 ,获得积分10
11秒前
11秒前
August完成签到,获得积分10
11秒前
jun完成签到 ,获得积分10
12秒前
kyt完成签到,获得积分10
14秒前
apckkk完成签到 ,获得积分10
14秒前
王佳亮完成签到,获得积分10
14秒前
影子完成签到,获得积分10
14秒前
XF完成签到,获得积分10
15秒前
15秒前
析界成微发布了新的文献求助10
15秒前
白冰发布了新的文献求助10
15秒前
SciGPT应助无限苞络采纳,获得10
15秒前
15秒前
稳重完成签到 ,获得积分10
15秒前
sincerely完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188717
求助须知:如何正确求助?哪些是违规求助? 4372982
关于积分的说明 13614788
捐赠科研通 4226319
什么是DOI,文献DOI怎么找? 2318214
邀请新用户注册赠送积分活动 1316790
关于科研通互助平台的介绍 1266598