Soft-self and Hard-cross Graph Attention Network for Knowledge Graph Entity Alignment

计算机科学 知识图 图形 理论计算机科学 人工智能
作者
Zhihuan Yan,Rong Peng,Yaqian Wang,Weidong Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:231: 107415-107415 被引量:8
标识
DOI:10.1016/j.knosys.2021.107415
摘要

Knowledge Graph (KG) entity alignment aims to identify entities across different KGs that refer to the same real world object, and it is the key step towards KG integration and KG complement. Recently, Graph Attention Network (GAT) based models become a popular paradigm in entity alignment community owing to its ability in modeling structural data. But current GAT based models either ignore relation semantics and edge directions when learning entity neighbor representations or make no distinction between incoming neighbors and outgoing neighbors when calculating their attention scores. Furthermore, softmax functions utilized in soft attention mechanisms of current models always assign small but nonzero probabilities to trivial elements, which is unsuitable for learning alignment oriented entity embeddings. Taking these issues into account, this paper proposes a novel GAT based entity alignment model SHEA (Soft-self and Hard-cross Graph Attention Networks for Knowledge Graph Entity Alignment), which takes both relation semantics and edge directions into consideration when modeling single KG, and distinguishes prior aligned neighbors from the general ones to take full advantage of prior aligned information. Specifically, a type of four-channels graph attention layer is conceived to aggregate information from entity neighbors in different cases. The first two channels teach entities to aggregate information from their neighbors with soft-self attention, where both neighboring entities and the linked relations are used to obtain attention values. The other two channels teach entities to aggregate information from their neighbors with hard-cross graph attention, where tf_idf1 is utilized to measure the importance of entity neighbors. Extensive experiments on five publicly available datasets demonstrate our superior performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无为完成签到,获得积分10
4秒前
勤恳的书文完成签到 ,获得积分10
10秒前
铜锣湾小研仔完成签到,获得积分10
12秒前
2025顺顺利利完成签到 ,获得积分10
12秒前
14秒前
17秒前
bull9518发布了新的文献求助10
17秒前
裴仰纳完成签到 ,获得积分10
18秒前
19秒前
moroa完成签到,获得积分10
20秒前
jun完成签到 ,获得积分10
22秒前
求知的周完成签到,获得积分10
23秒前
Cynthia发布了新的文献求助10
25秒前
嗝嗝完成签到,获得积分10
25秒前
冰留完成签到 ,获得积分10
25秒前
七仔完成签到 ,获得积分10
30秒前
泥過完成签到 ,获得积分10
32秒前
EMMA完成签到,获得积分20
34秒前
ranj完成签到,获得积分10
35秒前
橙子慢慢来完成签到,获得积分10
39秒前
笑点低的斑马完成签到,获得积分10
40秒前
Cynthia完成签到,获得积分20
41秒前
bull9518发布了新的文献求助10
45秒前
杨白秋完成签到,获得积分10
48秒前
科研狗的春天完成签到 ,获得积分10
50秒前
周小鱼完成签到,获得积分10
50秒前
MADAO完成签到 ,获得积分10
51秒前
ddd完成签到,获得积分10
53秒前
meixinhu完成签到,获得积分10
53秒前
救我完成签到,获得积分10
55秒前
57秒前
139完成签到 ,获得积分0
58秒前
简奥斯汀完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
牧百川发布了新的文献求助10
1分钟前
所所应助xuxu采纳,获得10
1分钟前
DireWolf完成签到 ,获得积分10
1分钟前
尔玉完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800999
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329619
捐赠科研通 3063070
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726