清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Soft-self and Hard-cross Graph Attention Network for Knowledge Graph Entity Alignment

计算机科学 知识图 图形 理论计算机科学 人工智能
作者
Zhihuan Yan,Rong Peng,Yaqian Wang,Weidong Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:231: 107415-107415 被引量:8
标识
DOI:10.1016/j.knosys.2021.107415
摘要

Knowledge Graph (KG) entity alignment aims to identify entities across different KGs that refer to the same real world object, and it is the key step towards KG integration and KG complement. Recently, Graph Attention Network (GAT) based models become a popular paradigm in entity alignment community owing to its ability in modeling structural data. But current GAT based models either ignore relation semantics and edge directions when learning entity neighbor representations or make no distinction between incoming neighbors and outgoing neighbors when calculating their attention scores. Furthermore, softmax functions utilized in soft attention mechanisms of current models always assign small but nonzero probabilities to trivial elements, which is unsuitable for learning alignment oriented entity embeddings. Taking these issues into account, this paper proposes a novel GAT based entity alignment model SHEA (Soft-self and Hard-cross Graph Attention Networks for Knowledge Graph Entity Alignment), which takes both relation semantics and edge directions into consideration when modeling single KG, and distinguishes prior aligned neighbors from the general ones to take full advantage of prior aligned information. Specifically, a type of four-channels graph attention layer is conceived to aggregate information from entity neighbors in different cases. The first two channels teach entities to aggregate information from their neighbors with soft-self attention, where both neighboring entities and the linked relations are used to obtain attention values. The other two channels teach entities to aggregate information from their neighbors with hard-cross graph attention, where tf_idf1 is utilized to measure the importance of entity neighbors. Extensive experiments on five publicly available datasets demonstrate our superior performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
风信子deon01完成签到,获得积分10
6秒前
liangziwei发布了新的文献求助30
8秒前
18秒前
Sun发布了新的文献求助10
22秒前
爱科研的光催人完成签到,获得积分10
23秒前
haimianbaobao完成签到 ,获得积分10
24秒前
turtle完成签到 ,获得积分10
24秒前
艳艳宝完成签到 ,获得积分10
45秒前
56秒前
1分钟前
1分钟前
tfq200发布了新的文献求助10
1分钟前
研友_LN25rL完成签到,获得积分10
1分钟前
贪玩丸子完成签到 ,获得积分10
1分钟前
huiluowork完成签到 ,获得积分10
1分钟前
拼搏的寒凝完成签到 ,获得积分10
1分钟前
不知道叫个啥完成签到 ,获得积分10
1分钟前
tszjw168完成签到 ,获得积分0
1分钟前
惊鸿H完成签到 ,获得积分10
1分钟前
kd1412完成签到 ,获得积分10
1分钟前
蔚欢完成签到 ,获得积分10
2分钟前
火星上的雨柏完成签到 ,获得积分10
2分钟前
我很厉害的1q完成签到,获得积分10
2分钟前
游泳池完成签到,获得积分10
2分钟前
爱听歌盼海完成签到 ,获得积分10
2分钟前
qianzhihe2完成签到,获得积分10
2分钟前
gwbk完成签到,获得积分10
3分钟前
时尚白凡完成签到 ,获得积分10
3分钟前
liangziwei完成签到,获得积分20
3分钟前
Jasperlee完成签到 ,获得积分10
3分钟前
雪花完成签到 ,获得积分10
3分钟前
3分钟前
level完成签到 ,获得积分10
3分钟前
SharonDu完成签到 ,获得积分10
3分钟前
3分钟前
科科通通完成签到,获得积分10
4分钟前
ywzwszl完成签到,获得积分10
4分钟前
幸福的羿完成签到 ,获得积分10
4分钟前
无辜的黄豆完成签到 ,获得积分10
5分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845802
求助须知:如何正确求助?哪些是违规求助? 6208037
关于积分的说明 15616806
捐赠科研通 4962505
什么是DOI,文献DOI怎么找? 2675562
邀请新用户注册赠送积分活动 1620274
关于科研通互助平台的介绍 1575639